18.設數(shù)列{an}的前n項和為Sn,已知${S_n}=2{a_n}-1({n∈{N^*}})$
(I)求數(shù)列{an}的通項公式;
( II)若bn=log2an+1,求數(shù)列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n項和Tn

分析 (I)由${S_n}=2{a_n}-1({n∈{N^*}})$,可得n=1時,a1=2a1-1,解得a1.n≥2時,an=Sn-Sn-1,可得an=2an-1.再利用等比數(shù)列的通項公式即可得出.
( II)bn=log2an+1=n.可得$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂項求和”方法即可得出.

解答 解:(I)∵${S_n}=2{a_n}-1({n∈{N^*}})$,∴n=1時,a1=2a1-1,解得a1=1.
n≥2時,an=Sn-Sn-1=2an-1-(2an-1-1),可得an=2an-1
∴數(shù)列{an}是以首項為1,公比為2的等比數(shù)列,
∴an=2n-1
( II)bn=log2an+1=n.
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

點評 本題考查了“裂項求和”方法、等比數(shù)列的通項公式、數(shù)列遞推關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.在單調(diào)遞增的等比數(shù)列{an}中,${a_{{1_{\;}}}}+{a_4}=5,{a_2}•{a_3}$=6,則$\frac{a_4}{a_1}$=( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)$f(x)=({m^2}-3m-3){x^{\sqrt{m}}}$為冪函數(shù),則實數(shù)m的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.集合A={x|3≤x≤9},集合B={x|m+1<x<2m+4},m∈R
(I)若m=1,求∁R(A∩B)
(II)若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x-3,x≤0\\-2+lnx,x>0\end{array}\right.$的零點為-1或e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象.為了得到這個函數(shù)的圖象,只需將y=sinx(x∈R)的圖象上所有的點(  )
A.向左平移$\frac{π}{3}$個單位,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍
B.向左平移$\frac{π}{3}$個單位,再把所得各點的橫坐標伸長到原來的2倍
C.向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍
D.向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標伸長到原來的2倍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(2x+1)的定義域為[-3,3],則函數(shù)f(x-1)的定義域為[-4,8].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在長方體ABCD-A1B1C1D1中,E、F分別是棱BC,CC1上的點,CF=AB=2CE,AB:AD:AA1=1:2:4,二面角A1-ED-F的正弦值$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設a,b,c為非零實數(shù),則x=$\frac{a}{|a|}$+$\frac{|b|}$+$\frac{c}{|c|}$+$\frac{{|{abc}|}}{abc}$的所有值所組成的集合為( 。
A.{0,4}B.{-4,0}C.{-4,0,4}D.{0}

查看答案和解析>>

同步練習冊答案