8.在單調(diào)遞增的等比數(shù)列{an}中,${a_{{1_{\;}}}}+{a_4}=5,{a_2}•{a_3}$=6,則$\frac{a_4}{a_1}$=(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.-$\frac{3}{2}$

分析 由已知結(jié)合等比數(shù)列的性質(zhì)列式求得a1,a4的值得答案.

解答 解:由${a_{{1_{\;}}}}+{a_4}=5,{a_2}•{a_3}$=6,
得$\left\{\begin{array}{l}{{a}_{1}+{a}_{4}=5}\\{{a}_{1}•{a}_{4}=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{{a}_{4}=3}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=3}\\{{a}_{4}=2}\end{array}\right.$.
∵數(shù)列{an}單調(diào)遞增,∴$\left\{\begin{array}{l}{{a}_{1}=2}\\{{a}_{4}=3}\end{array}\right.$,
則$\frac{a_4}{a_1}$=$\frac{3}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.中石化集團(tuán)通過與安哥拉國家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:
井號(hào)I123456
坐標(biāo)(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;
(2)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過拋物線$y=\frac{1}{4}{x^2}$的焦點(diǎn)B,離心率為$\frac{{2\sqrt{2}}}{3}$,直線l交橢圓于P,Q(異于點(diǎn)B)兩點(diǎn),且BP⊥BQ.
(1)求橢圓C的方程;
(2)求△BPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題正確的個(gè)數(shù)是(  )①已知p:?x∈R,方程ax2-2x+a=0有正實(shí)根,則¬p:?a∈R,方程ax2-2x+a=0有負(fù)實(shí)根
②?x∈R,x>0
③至少有一個(gè)整數(shù),它既不是2的倍數(shù),也不是3的倍數(shù).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校從高三年級(jí)期末考試的學(xué)生中抽出20名學(xué)生,其成績(均為整數(shù))的頻率分布直方圖如圖所示:
(1)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(2)從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在不同分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$f(x)=x-{e^{\frac{x}{a}}}(a>0)$.
(1)曲線y=f(x)在x=0處的切線恰與直線x-2y+1=0垂直,求a的值;
(2)若a=2,x∈[a,2a]求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.畫出底面邊長為4cm,高為3cm的正四棱錐的直觀圖.(不寫作法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等比數(shù)列{an}的前n項(xiàng)和Sn,若a2015=3S2014+2016,a2014=3S2013+2016,則公比q=( 。
A.2B.1或4C.4D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知${S_n}=2{a_n}-1({n∈{N^*}})$
(I)求數(shù)列{an}的通項(xiàng)公式;
( II)若bn=log2an+1,求數(shù)列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案