A. | 向左平移$\frac{π}{3}$個單位,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍 | |
B. | 向左平移$\frac{π}{3}$個單位,再把所得各點的橫坐標伸長到原來的2倍 | |
C. | 向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍 | |
D. | 向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標伸長到原來的2倍 |
分析 由函數的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數的解析式,再利用函數y=Asin(ωx+φ)的圖象變換規(guī)律,得出結論.
解答 解:根據函數y=Asin(ωx+φ)(x∈R)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象可得A=1,
T=$\frac{2π}{ω}$=$\frac{5π}{6}$+$\frac{π}{6}$,∴ω=2.
再根據五點法組圖可得2×(-$\frac{π}{6}$)+φ=0,∴φ=$\frac{π}{3}$,∴函數的解析式為 y=sin(2x+$\frac{π}{3}$).
故把y=sinx(x∈R)的圖象向左平移$\frac{π}{3}$個單位,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍,
可得 y=sin(2x+$\frac{π}{3}$) 的圖象,
故選:A.
點評 本題主要考查由函數y=Asin(ωx+φ)的部分圖象求解析式,由函數的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值;函數y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 函數y=-2x2+x在[1,3)上單調遞減 | B. | ln3>1 | ||
C. | 若A∩B=A,則B⊆A | D. | lg2+lg3=lg5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
視覺 聽覺 | 視覺記憶能力 | ||||
偏低 | 中等 | 偏高 | 超常 | ||
聽覺 記憶 能力 | 偏低 | 0 | 7 | 5 | 1 |
中等 | 1 | 8 | 3 | b | |
偏高 | 2 | a | 0 | 1 | |
超常 | 0 | 2 | 1 | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{2}{9}$ | B. | $\frac{4}{9}$ | C. | $\frac{2}{9}$或-$\frac{4}{9}$ | D. | -$\frac{2}{9}$或$\frac{4}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com