如圖,在正方體ABCD-A1B1C1D1中,
(1)求證:AD1⊥平面CDA1B1
(2)求直線BD與平面CDA1B1所成的角.
考點:直線與平面所成的角,直線與平面垂直的判定
專題:空間位置關系與距離,空間角
分析:(1)由正方形性質得AD1⊥A1D,由線面垂直得AD1⊥A1B1,由此能證明AD1⊥平面CDA1B1
(2)過點B作BE⊥B1C,交B1C于點E,連接DE,∠BDE即為BD與面CDA1B1所成的角,由此能求出直線BD與平面CDA1B1所成的角.
解答: 解:(1)在正方體中,AD1⊥A1D,(1分)
又A1B1⊥面ADD1A1,且AD1?面ADD1A1,
∴AD1⊥A1B1,(4分)
∵A1D,A1B1在平面CDA1B1內(nèi),且相交,
∴AD1⊥平面CDA1B1.(6分)
(2)過點B作BE⊥B1C,交B1C于點E,連接DE,(7分)
∵DE∥AD,AD1⊥平面CDA1B1,
∴DE⊥平面CDA1B1
∴∠BDE即為BD與面CDA1B1所成的角,(9分)
在Rt△DEB中,BE=
2
2
,BD=
2
,
∴sin∠EBD=
BE
BD
=
1
2
,(11分),
∴直線BD與平面CDA1B1所成的角為30°.(12分)
點評:本題考查直線與平面垂直的證明,考查線面角的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

作出函數(shù)y=|x+1|的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(Ⅰ)求直線EC與平面ABE所成角的正切值;
(Ⅱ)線段EA上是否存在點F,使EC∥平面FBD?存在請確定具體位置,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=-2,且f(x)在(1,+∞)上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(ii)若b=-1,c=1,當x∈[0,1]時,|f(x)|的最大值為1,求實數(shù)a的取值范圍;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有兩個小于1的不等正根,求a的最小正整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義域在(0,+∞)上的增函數(shù),且滿足f(2)=1,f(xy)=f(x)+f(y)
(1)求f(1),f(4)的值. 
(2)如果f(x)-f(x-3)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是棱PD的中點.
(Ⅰ)若θ=60°,求證:AE⊥平面PCD;
(Ⅱ)求θ的值,使二面角P-CD-A的平面角最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+2x,x<0
lnx,x>0

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x≥1時,證明:曲線f(x)與g(x)=x-1僅有一個公共點;
(Ⅲ)設A(x1,f(x1)),B(x2,f(x2))(x1<x2<0)為曲線f(x)上的兩點,且曲線f(x)在點A,B處的切線互相垂直,求x2-x1的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學將一塊底邊長為5的等腰直角三角板按如圖所示的方式放置在平面直角坐標系上,其中∠OMN=
π
2
,函數(shù)f(x)=Asin(ωx),(A>0,ω>0),
(1)若函數(shù)f(x)在同一周期內(nèi)的圖象過點O,M,N,求函數(shù)f(x)的解析式;
(2)若將該三角板繞原點按逆時針方向旋轉角α(0<α<
π
2
)
時;頂點M′,N′恰好同時落在曲線y=
k
x
(x≠0)上,求實數(shù)k的值;
(3)若當x∈[0,π]時,函數(shù)f(x)的圖象恰好都落在△OMN內(nèi)(允許落在△OMN的邊界上),求當么取最大值時,函數(shù)g(x)=cos(ωx+A)在區(qū)間[0,π]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前項和為Sn,且滿足Sn+an=1.
(1)求數(shù)列{an}的通項公式;
(2)設cn=
1
an
,數(shù)列{bn},滿足b1c1+b2c2+…+bncn=(2n-1)2n+1+2,求出數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案