過拋物線x2=
1
8
y的焦點作直線交拋物線于A、B兩點,線段AB的中點M的縱坐標為2,則線段AB長為
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出準線方程為y=-
1
32
,由拋物線的定義可得AB=AA′+BB′,再由線段AB的中點M的縱坐標為2可得 2MM′=AA′+BB′,由此求得線段AB的長.
解答: 解:拋物線x2=
1
8
y中p=
1
16

設(shè)A、B、M在準線y=-
1
32
上的射影分別為A′、B′、M′,則由拋物線的定義可得AB=AA′+BB′.
再由線段AB的中點M的縱坐標為2可得 2MM′=AA′+BB′,即 2(2+
1
32
)=AA′+BB′=AB,
∴AB=
65
16
,
故答案為:
65
16
點評:本題主要考查拋物線的定義、標準方程,以及簡單性質(zhì)的應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l經(jīng)過拋物線x2=4y的焦點,且與拋物線交于A,B兩點,點O為坐標原點.
(Ⅰ)證明:∠AOB為鈍角.
(Ⅱ)若△AOB的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的參數(shù)方程
x=2cosθ
y=2sinθ
(θ∈(0,π]),點P(x,y)在曲線C上,則
y+1
x+1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對于任意實數(shù)m,不等式|5-3m|+|3m-4|≥x-
2
x
恒成立,則實數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如圖:
x -1 0 4 5
f(x) 1 2 2 1
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于f(x)的命題:
①函數(shù)f(x)是周期函數(shù); 
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最小值為0;
④函數(shù)y=f(x)-a的零點個數(shù)可能為0、1、2、3、4個.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若單位向量
a
,
b
的夾角為鈍角,|
b
-t
a
|(t∈R)最小值為
3
2
,且(
c
-
a
)•(
c
-
b
)=0,則
c
•(
a
+
b
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

存在x∈R,使|3x+1|≤|2x|+a成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“若g′(x0)=0,則x0是函數(shù)y=g(x)的極值點,因為g(x)=x3中,g′(x)=3x2且g′(0)=0,所以0是g(x)=x3的極值點.”在此“三段論”中,下列說法正確的是( 。
A、推理過程錯誤
B、大前提錯誤
C、小前提錯誤
D、大、小前提錯誤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明命題“已知A,B,C,D是空間中的四點,直線AB與CD是異面直線,則直線AC和BD也是異面直線.”應(yīng)假設(shè)( 。
A、直線AC和BD是平行直線
B、直線AB和CD是平行直線
C、直線AC和BD是共面直線
D、直線AB和CD是共面直線

查看答案和解析>>

同步練習冊答案