已知數(shù)列{an}{bn}滿足:a1λ,an1ann4,bn(1)n(an3n21),其中λ為實數(shù),n為正整數(shù).

(1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;

(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

 

1)見解析(2)見解析

【解析】(1)假設存在一個實數(shù)λ,使{an}是等比數(shù)列,則有a1a3,

2λ?λ24λ9λ24λ?90,矛盾,所以{an}不是等比數(shù)列.

(2)因為bn1(1)n1[an13(n1)21](1)n1 =- (1)n·(an3n21)=-bn.

b1=-(λ18),所以當λ=-18時,

bn0(nN*),此時{bn}不是等比數(shù)列;

λ18時,b1=-(λ18)≠0,由bn1=-bn.

可知bn≠0,所以=-(nN*)

故當λ18時,數(shù)列{bn}是以-(λ18)為首項,-為公比的等比數(shù)列.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練13練習卷(解析版) 題型:選擇題

如圖,正方體ABCD-A1B1C1D1的棱長為aM,N分別為A1BAC上的點,A1MAN,則MN與平面BB1C1C的位置關系是(  )

A.相交 B.平行 C.垂直 D.不能確定

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:填空題

設圓x2y22的切線lx軸正半軸、y軸正半軸分別交于點A,B,當|AB|取最小值時,切線l的方程為________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷4練習卷(解析版) 題型:填空題

如圖為某幾何體的三視圖,則該幾何體的體積為________

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷4練習卷(解析版) 題型:選擇題

已知正方體ABCD-A1B1C1D1,M為棱A1B1的中點,N為棱A1D1的中點.如圖是該正方體被M,N,A所確定的平面和N,DC1所確定的平面截去兩個角后所得的幾何體,則這個幾何體的正視圖為(  )

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷3練習卷(解析版) 題型:選擇題

已知數(shù)列{an}的通項公式是an=-n212n32,其前n項和是Sn,對任意的m,nN*m<n,則SnSm的最大值是(  )

A.-21 B4 C8 D10

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷3練習卷(解析版) 題型:選擇題

公比為2的等比數(shù)列{an}的各項都是正數(shù),且a3a1116,則a5(  )

A1 B2 C4 D8

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷1練習卷(解析版) 題型:解答題

經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1 t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1 t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了130 t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(1)T表示為X的函數(shù);

(2)根據(jù)直方圖估計利潤T不少于57 000元的概率;

(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若需求量X[100,110),則取X105,且X105的概率等于需求量落入[100,110)的頻率),求T的數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練6練習卷(解析版) 題型:選擇題

已知函數(shù)f(x)Acos(ωxφ)(A>0ω>0,φR),則f(x)是奇函數(shù)φ(  )

A.充分不必要條件 B.必要不充分條件

C.充分必要條件 D.既不充分也不必要條件

 

查看答案和解析>>

同步練習冊答案