設(shè)圓x2y22的切線lx軸正半軸、y軸正半軸分別交于點(diǎn)AB,當(dāng)|AB|取最小值時(shí),切線l的方程為________

 

xy20

【解析】設(shè)點(diǎn)AB的坐標(biāo)分別為A(a,0),B(0b)(a,b>0),則直線AB的方程為1,即bxayab0,因?yàn)橹本AB和圓相切,所以圓心到直線AB的距離d,整理得ab,即2(a2b2)(ab)2≥4ab,所以ab≥4,當(dāng)且僅當(dāng)ab時(shí)取等號,又|AB|≥2,所以|AB|的最小值為2,此時(shí)ab,即ab2,切線l的方程為,即xy20.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練15練習(xí)卷(解析版) 題型:解答題

設(shè)F1,F2分別是橢圓Ex21(0<b<1)的左、右焦點(diǎn),過F1的直線lE相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.

(1)|AB|;

(2)若直線l的斜率為1,求b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:選擇題

已知兩條直線a,b與兩個(gè)平面α,β,bα,則下列命題中正確的是(  )

aα,則ab;ab,則aα;bβ,則αβ;αβ,則bβ.

A①③ B②④ C①④ D②③

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:填空題

在正項(xiàng)數(shù)列{an}中,a12an12an3×5n,則數(shù)列{an}的通項(xiàng)公式為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題

已知直線lyx,圓Ox2y25,橢圓E1(a>b>0)的離心率e,直線l被圓O截得的弦長與橢圓的短軸長相等.

(1)求橢圓E的方程;

(2)過圓O上任意一點(diǎn)P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題

已知直線yk(xm)與拋物線y22px(p>0)交于A,B兩點(diǎn),且OAOB,ODAB于點(diǎn)D.若動(dòng)點(diǎn)D的坐標(biāo)滿足方程x2y24x0,則m等于(  )

A1 B2 C3 D4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷4練習(xí)卷(解析版) 題型:解答題

如圖,ABCD是塊矩形硬紙板,其中AB2ADADEDC的中點(diǎn),將它沿AE折成直二面角D-AE-B.

(1)求證:AD平面BDE;

(2)求二面角B-AD-E的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷3練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}{bn}滿足:a1λ,an1ann4bn(1)n(an3n21),其中λ為實(shí)數(shù),n為正整數(shù).

(1)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;

(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:解答題

如圖,梯形ABCD內(nèi)接于O,ADBC,過點(diǎn)CO的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E.

(1)求證:AB2DE·BC;

(2)BD9AB6,BC9,求切線PC的長.

 

查看答案和解析>>

同步練習(xí)冊答案