(08年昆明市適應(yīng)考試文)(12分)已知三次函數(shù).

(Ⅰ)求證:函數(shù)圖象的對(duì)稱中心點(diǎn)的橫坐標(biāo)與導(dǎo)函數(shù)圖象的頂點(diǎn)橫坐標(biāo)相同;

(Ⅱ)設(shè)點(diǎn)為函數(shù)圖象上極大值對(duì)應(yīng)的點(diǎn),點(diǎn)處的切線交函數(shù)的圖象于另一點(diǎn),點(diǎn)處的切線為,函數(shù)圖象對(duì)稱中心處的切線為,直線分別與直線交于點(diǎn)、. 求證:.

解析:(Ⅰ), 是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,

所以函數(shù)圖象的對(duì)稱中心即為.                         -----------------2分

,其圖象頂點(diǎn)坐標(biāo)為

所以函數(shù)圖象的對(duì)稱中心與導(dǎo)函數(shù)圖象的頂點(diǎn)橫坐標(biāo)相同. -----------------4分

(Ⅱ)令.

當(dāng)變化時(shí),變化情況如下表:

0

0

極大值

極小值

                                                           

時(shí),有極大值2,

,曲線在點(diǎn)處的切線的斜率.

直線的方程為                                   -----------------6分

曲線在點(diǎn)處的切線的斜率.

直線的方程為

又曲線在點(diǎn)處的切線的斜率.

直線的方程為.

聯(lián)立直線的方程與直線的方程, ,解得,

.-----------------10分 

聯(lián)立直線的方程與直線的方程, ,解得,

.

,

所以. -----------------12分

圖象如右:

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年昆明市適應(yīng)考試文) (12分)等差數(shù)列中,為數(shù)列的前項(xiàng)和,且滿足.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),,是否存在最大的整數(shù),使得對(duì)任意,均有成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年昆明市適應(yīng)考試文)(12分)如圖,直三棱柱,平面是棱上一點(diǎn),平面,.

(Ⅰ)求證:點(diǎn)是棱的中點(diǎn);

   (Ⅱ)求二面角的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年昆明市適應(yīng)考試文)(12分)在2008年北京奧運(yùn)會(huì)某項(xiàng)目的選拔比賽中, 、兩個(gè)代表隊(duì)進(jìn)行對(duì)抗賽. 每隊(duì)三名隊(duì)員. 隊(duì)隊(duì)員是,隊(duì)隊(duì)員是. 按以往多次比賽的統(tǒng)計(jì),對(duì)陣隊(duì)員之間勝負(fù)概率如下表,現(xiàn)按表中對(duì)陣方式出場(chǎng)進(jìn)行三場(chǎng)比賽,每場(chǎng)勝隊(duì)得1分,負(fù)隊(duì)得0分.

(Ⅰ)求A 隊(duì)得分為2分的概率;

(Ⅱ)分別求A 隊(duì)得分不少于2分的概率及B隊(duì)得分不多于2分的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年昆明市適應(yīng)考試文) (10分)在△ABC中,ab、c分別為角AB、C的對(duì)邊,表示該三角形的面積,且

(Ⅰ)求角的大。

(Ⅱ)若,求b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案