已知函數(shù)函數(shù),若存在,使得成立,則實數(shù)a的取值范圍是    

試題分析:當(dāng)x∈時,f(x)=值域是(0,1],當(dāng)x∈時,f(x)=值域是[0,],故函數(shù)的值域為[0,1],又根據(jù)三角函數(shù)的有界性得值域是[2-2a,2-a],∵存在存在,使得成立,∴[0,1]∩[2-2a,2-a]≠∅,若[0,1]∩[2-2a,2-a]=∅,則2-2a>1或2-a<0,即a<或a>,∴a的取值范圍是
點評:解題的關(guān)鍵是通過看兩函數(shù)值域之間的關(guān)系來確定a的范圍
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(1)當(dāng)a=0時,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),設(shè)
(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);
(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)判斷函數(shù)在定義域上的單調(diào)性;
(2)利用題(1)的結(jié)論,,求使不等式上恒成立時的實數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
已知函數(shù)的圖象過點,且在內(nèi)單調(diào)遞減,在上單調(diào)遞增。
(1)求的解析式;
(2)若對于任意的,不等式恒成立,試問這樣的是否存在.若存在,請求出的范圍,若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間恰有2個零點,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定義在上的函數(shù)是最小正周期為的偶函數(shù),當(dāng)時,,且在上單調(diào)遞減,在上單調(diào)遞增,則函數(shù)上的零點個數(shù)為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)滿足,且,,則下列等式不成立的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果對數(shù)函數(shù)上是減函數(shù),則的取值范圍是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案