11.如圖,在多面體A1C1D1-ABCD中,平面A1C1D1∥平面ABCD,AA1∥DD1∥CC1,AA1⊥平面ABCD,四邊形為矩形,AD=1,DC=2,DD1=3.
(1)已知$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}{C}_{1}}$,且DE⊥A1C1,求實數(shù)λ的值;
(2)已知H是平面A1BC1內(nèi)的點,求DH的最小值.

分析 (1)以D為原點,建立空間直角坐標系D-xyz,利用向量法能求出實數(shù)λ的值.
(2)求出平面A1BC1的法向量,DH的最小值即為點D到平面A1BC1的距離,由此利用向量法能求出DH的最小值.

解答 解:(1)以D為原點,建立空間直角坐標系D-xyz,
則D(0,0,0),A1(1,0,3),C1(0,2,3),B(1,2,0),
設(shè)E(x,y,z),則$\overrightarrow{{A}_{1}E}$=(x-1,y,z-3),$\overrightarrow{{A}_{1}{C}_{1}}$=(-1,2,0),
∵$\overrightarrow{{A}_{1}E}=λ\overrightarrow{{A}_{1}{C}_{1}}$,∴$\left\{\begin{array}{l}{x-1=-λ}\\{y=2λ}\\{z-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1-λ}\\{y=2λ}\\{z=3}\end{array}\right.$,
∴E(1-λ,2λ,3),
∴$\overrightarrow{DE}$=(1-λ,2λ,3),
∵DE⊥A1C1,∴$\overrightarrow{DE}•\overrightarrow{{A}_{1}{C}_{1}}$=(1-λ)×(-1)+2λ×2+3×0=0,
解得$λ=\frac{1}{5}$.
(2)$\overrightarrow{B{A}_{1}}$=(0,-2,3),$\overrightarrow{B{C}_{1}}$=(-1,0,3),
設(shè)平面A1BC1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{B{A}_{1}}=-2y+3z=0}\\{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=-x+3z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(6,3,2),
DH的最小值即為點D到平面A1BC1的距離,
∵$\overrightarrow{D{A}_{1}}$=(1,0,3),∴DH的最小值d=$\frac{|\overrightarrow{D{A}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{12}{7}$.

點評 本題考查空間向量在立體幾何中的應(yīng)用,考查運算求解能力、數(shù)形結(jié)合思想和函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A.$\frac{82}{3}$B.26C.80D.$\frac{80}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知p:x≤-1,q:a≤x<a+2,若q是p的充分不必要條件,則實數(shù)a的取值范圍為( 。
A.(-∞,1]B.[3,+∞)C.(-∞,-3]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在平面平直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,在頂點為A(-2,0),過點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)已知點P為AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ?若存在,求出點Q的坐標,若不存在,說明理由;
(3)若過點O作直線l的平行線交橢圓C于點M,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC的內(nèi)角A、B、C的對邊分別為a,b,c,且a≠b,則$\frac{sinC(bcosA-acosB)}{asinA-bsinB}$=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)f(x)=aex+blnx,且f′(1)=e,f′(-1)=$\frac{1}{e}$,則a+b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.角α的頂點與直角坐標系的原點重合,始邊與x軸的非負半軸重合,“角α的終邊在射線x+3y=0(x≥0)上”是“sin2α=-$\frac{3}{5}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知兩點A(0,1),B(4,3),則線段AB的垂直平分線方程是(  )
A.x-2y+2=0B.2x+y-6=0C.x+2y-2=0D.2x-y+6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=2ln(x-1)-(x-1)2
(1)求f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)+x2-3x-a=0在區(qū)間[2,4]內(nèi)恰有兩個相異的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案