【題目】如圖,已知長方體ABCDA1B1C1D1的對稱中心在坐標(biāo)原點(diǎn),交于同一頂點(diǎn)的三個(gè)面分別平行于三個(gè)坐標(biāo)平面,頂點(diǎn)A(-2,-3,-1),求其他七個(gè)頂點(diǎn)的坐標(biāo).

【答案】A1(2,-3,1),B1(2,3,1),C1(2,3,1)D1(2,-3,1)

【解析】試題分析: 根據(jù)對稱關(guān)系直接寫出各點(diǎn)坐標(biāo)

試題解析:由題意,得點(diǎn)B與點(diǎn)A關(guān)于xOz平面對稱,

故點(diǎn)B的坐標(biāo)為(-2,3,-1);

點(diǎn)D與點(diǎn)A關(guān)于yOz平面對稱,故點(diǎn)D的坐標(biāo)為(2,-3,-1);

點(diǎn)C與點(diǎn)A關(guān)于z軸對稱,故點(diǎn)C的坐標(biāo)為(2,3,-1);

由于點(diǎn)A1B1,C1D1分別與點(diǎn)A,B,CD關(guān)于xOy平面對稱,

故點(diǎn)A1,B1C1,D1的坐標(biāo)分別為A1(2,-3,1),B1(2,3,1),C1(2,3,1),D1(2,-3,1)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知底角為的等腰梯形,底邊長為12,腰長為,當(dāng)一條垂直于底邊 (垂足為)的直線從左至右移動(dòng)(與梯形有公共點(diǎn))時(shí),直線把梯形分成兩部分.

(1)令,試寫出直線右邊部分的面積的函數(shù)解析式;

(2)在(1)的條件下,令.構(gòu)造函數(shù)

①判斷函數(shù)上的單調(diào)性;

②判斷函數(shù)在定義域內(nèi)是否具有單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電進(jìn)行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照 , , , , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值并估計(jì)居民月均用電量的中位數(shù);

(Ⅱ)現(xiàn)從第8組和第9組的居民中任選取2戶居民進(jìn)行訪問,則兩組中各有一戶被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺(tái)稱為芻童.在如圖所示的塹堵與芻童的組合體中,.臺(tái)體體積公式:,其中分別為臺(tái)體上、下底面面積,為臺(tái)體高.

(Ⅰ)證明:直線 平面;

(Ⅱ)若,,三棱錐的體積,求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三點(diǎn)A(-1,1,2),B(1,2,-1),C(a,0,3),是否存在實(shí)數(shù)a,使A、B、C共線?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>,得曲線C.

)寫出C的參數(shù)方程;

)設(shè)直線l C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1 P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列各式的值:

(1)2log32-log3+log38-5

(2)[(1-log63)2+log62·log618]÷log64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有4位同學(xué)在同一天的上午、下午參加身高與體重立定跳遠(yuǎn)、肺活量握力、臺(tái)階五個(gè)項(xiàng)目的測試,每位同學(xué)測試兩個(gè)項(xiàng)目,分別在上午和下午,且每人上午和下午測試的項(xiàng)目不能相同.若上午不測握力,下午不測臺(tái)階,其余項(xiàng)目上午、下午都各測試一人,則不同的安排方式的種數(shù)為( )

A. 264 B. 72 C. 266 D. 274

查看答案和解析>>

同步練習(xí)冊答案