【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電進(jìn)行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照, , , , , , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值并估計居民月均用電量的中位數(shù);

(Ⅱ)現(xiàn)從第8組和第9組的居民中任選取2戶居民進(jìn)行訪問,則兩組中各有一戶被選中的概率.

【答案】(Ⅰ).中位數(shù)為408度.(Ⅱ)

【解析】試題分析:(1)根據(jù)頻率分布直方圖,求解的值,即可求得前4組的頻率之和,從而估計出居民的月均用電量的中位數(shù);

(2)計算出第8和第9組的戶數(shù),分別設(shè)為,從而得到選出2戶的基本事件的個數(shù),進(jìn)而得到兩組中各有一戶被選中的基本事件個數(shù),利用古典概型的概率計算公式,即可求解概率。

試題解析:

解:(Ⅰ) ,

設(shè)中位數(shù)是度,前5組的頻率之和為,

而前4組的頻率之和為,

所以, ,

,即居民月均用電量的中位數(shù)為408度.

(Ⅱ)第8組的戶數(shù)為,分別設(shè)為, , ,第9組的戶數(shù)為,分別設(shè)為, ,則從中任選出2戶的基本事件為, , , , , , , , , , , , 共15種.

其中兩組中各有一戶被選中的基本事件為, , , , , , 共8種.

所以第8,9組各有一戶被選中的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價為每件元,售價為每件元,每個月可賣出件;如果每件商品在該售價的基礎(chǔ)上每上漲元,則每個月少賣件(每件售價不能高于元).設(shè)每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.

(1)求的函數(shù)的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作拋物線的兩條切線, 切點分別為, .

(1) 證明: 為定值;

(2) 記△的外接圓的圓心為點, 是拋物線的焦點,任意實數(shù), 試判斷以為直徑的圓是否恒過點? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且kR)個單位的洗衣液在一定量水的洗衣機(jī)中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.

(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;

(2)若只投放一次4個單位的洗衣液,則有效去污時間可達(dá)幾分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求不等式的解集;

2)若,且,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左頂點為.

(1)求橢圓的方程;

(2)已知為坐標(biāo)原點, 是橢圓上的兩點,連接的直線平行軸于點,證明: 成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2sin(x-)-,現(xiàn)將f(x)的圖象向左平移個單位長度,再向上平移個單位長度,得到函數(shù)g(x)的圖象.

(1)求f()+g()的值;

(2)若a,b,c分別是△ABC三個內(nèi)角A,B,C的對邊,a+c=4,且當(dāng)x=B時,g(x)取得最大值,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方體ABCDA1B1C1D1的對稱中心在坐標(biāo)原點,交于同一頂點的三個面分別平行于三個坐標(biāo)平面,頂點A(-2,-3,-1),求其他七個頂點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知直線方程為(2m)x(12m)y43m0,求證:不論m為何實數(shù),此直線必過定點;

(2)過這定點引一直線,使它夾在兩坐標(biāo)軸間的線段被這點平分,求這條直線的方程.

查看答案和解析>>

同步練習(xí)冊答案