分析 (1)由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,sin(α+β)的值,利用兩角差的正弦函數(shù)公式即可計(jì)算得解.
(2)由(1)可求tanα,tan(α+β),進(jìn)而利用兩角和的正切函數(shù)公式即可計(jì)算得解.
解答 (本題滿分為12分)
解:(1)∵α均為銳角,sinα=$\frac{5}{13}$,得cosα=$\frac{12}{13}$,
又∵α+β∈(0,π),cos(α+β)=$\frac{3}{5}$,可得:sin(α+β)=$\frac{4}{5}$,-----------(3分)
∴sinβ=sin(α+β-α)=sin(α+β)cosα-cos(α+β)sinα=$\frac{4}{5}×\frac{12}{13}$-$\frac{3}{5}×\frac{5}{13}$=$\frac{33}{65}$…6分
(2)∵tanα=$\frac{5}{12}$,tan(α+β)=$\frac{4}{3}$,…9分
∴tan(2α+β)=$\frac{tanα+tan(α+β)}{1-tanαtan(α+β)}$=$\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12}×\frac{4}{3}}$=$\frac{63}{16}$…12分
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式,兩角和的正切函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+(y-2)2=2 | B. | (x+1)2+(y+2)2=2 | C. | (x-1)2+(y-2)2=5 | D. | (x+1)2+(y+2)2=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com