【題目】2020年初,由于疫情影響,開學(xué)延遲,為了不影響學(xué)生的學(xué)習(xí),國(guó)務(wù)院、省市區(qū)教育行政部門倡導(dǎo)各校開展“停學(xué)不停課、停學(xué)不停教”,某校語(yǔ)文學(xué)科安排學(xué)生學(xué)習(xí)內(nèi)容包含老師推送文本資料學(xué)習(xí)和視頻資料學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5;觀看視頻1個(gè)積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計(jì)發(fā)現(xiàn),文本資料學(xué)習(xí)積分的概率分布表如表1所示,視頻資料學(xué)習(xí)積分的概率分布表如表2所示.

1

文本學(xué)習(xí)積分

1

2

3

4

5

概率

2

視頻學(xué)習(xí)積分

2

4

6

概率

1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;

2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為,求的分布列及數(shù)學(xué)期望.

【答案】1;(2)分布列詳見解析,數(shù)學(xué)期望為

【解析】

1)由題意可得獲得的積分不低于(9分)的情形,因?yàn)閮深悓W(xué)習(xí)互不影響,根據(jù)相互獨(dú)立與互斥事件的概率計(jì)算公式即可得出概率

2)隨機(jī)變量的所有可能取值為01,2,3.由(1)每個(gè)人積分不低于(9分)的概率為.根據(jù)二項(xiàng)分布列的概率計(jì)算公式即可得出.

1)由題意,獲得的積分不低于9分的情形共有(如下表所示):

文本

3

4

5

5

視頻

6

6

6

4

因?yàn)閮深悓W(xué)習(xí)情況互不影響,

所以每日學(xué)習(xí)積分不低于9分的概率,

即每日學(xué)習(xí)積分不低于9分的概率為

2)隨機(jī)變量的所有可能取值為0,1,23

由(1)每個(gè)人積分不低于9分的概率為

,,

,

所以隨機(jī)變量的概率分布列為:

0

1

2

3

P

可得

所以隨機(jī)變量的數(shù)學(xué)期望為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家準(zhǔn)備在“6.18”舉行促銷活動(dòng),現(xiàn)根據(jù)近七年的廣告費(fèi)與銷售量的數(shù)據(jù)確定此次廣告費(fèi)支出.廣告費(fèi)支出x(萬(wàn)元)和銷售量y(萬(wàn)臺(tái))的數(shù)據(jù)如下:

年份

2013

2014

2015

2016

2017

2018

2019

廣告費(fèi)支出x

1

2

4

6

11

13

19

銷售量y

1.8

3.0

4.0

4.2

5.0

5.3

5.4

1)若用線性回歸模型擬合yx的關(guān)系,求出y關(guān)于x的線性回歸方程(保留小數(shù)點(diǎn)后兩位);

2)若用模型擬合yx的關(guān)系,可得回歸方程,經(jīng)計(jì)算線性回歸模型和該模型的R2分別約為0.7740.888,請(qǐng)用R2說明選擇哪個(gè)回歸模型更好;

3)已知利潤(rùn)zx,y的關(guān)系為z200yx.根據(jù)(2)的結(jié)果,當(dāng)廣告費(fèi)x20時(shí),求銷售量及利潤(rùn)的預(yù)報(bào)值.

參考公式:回歸直線x的斜率和截距的最小二乘估計(jì)分別為,.

參考數(shù)據(jù):≈2.24,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長(zhǎng)潛伏者”.

1)求這名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這名患者中“長(zhǎng)潛伏者”的人數(shù);

2)現(xiàn)有名患者自愿報(bào)名某臨床試驗(yàn),其中“短潛伏者”人,“長(zhǎng)潛伏者”人,醫(yī)生從人中隨機(jī)抽取兩人做臨床試驗(yàn),求兩人中恰有人為“長(zhǎng)潛伏者”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)人們休閑方式的一次調(diào)查中,共調(diào)查120人,其中女性70人,男性50人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng);男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng).

1)請(qǐng)畫出性別與休閑方式的列聯(lián)表;

2)能否在犯錯(cuò)誤的概率不超過0.10的前提下,認(rèn)為休閑方式與性別有關(guān)?

附:,

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年高考總成績(jī)由語(yǔ)數(shù)外三門統(tǒng)考科目和物理、化學(xué)等六門選考科目組成,將每門選考科目的考生原始成績(jī)從高到低劃分為、、8個(gè)等級(jí),參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%24%、16%、7%、3%,選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將AE等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、,八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).某市高一學(xué)生共6000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六門選考科目進(jìn)行測(cè)試,其中化學(xué)考試原始成績(jī)大致服從正態(tài)分布

1)求該市化學(xué)原始成績(jī)?cè)趨^(qū)間的人數(shù);

2)以各等級(jí)人數(shù)所占比例作為各分?jǐn)?shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間的人數(shù),求

(附:若隨機(jī)變量,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)給出下列四個(gè)結(jié)論:①對(duì),,使得無(wú)解;②對(duì),,使得有兩解;③當(dāng)時(shí),,使得有解;④當(dāng)時(shí),,使得有三解.其中,所有正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,.已知點(diǎn)在橢圓上,且點(diǎn)M到兩焦點(diǎn)距離之和為4.

1)求橢圓的方程;

2)設(shè)與MOO為坐標(biāo)原點(diǎn))垂直的直線交橢圓于A,BA,B不重合),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)說法正確的是(

A.的展開式中含項(xiàng)的二項(xiàng)式系數(shù)為20;

B.事件為必然事件,則事件、是互為對(duì)立事件;

C.設(shè)隨機(jī)變量服從正態(tài)分布,若,則的值分別為,;

D.甲、乙、丙、丁4個(gè)人到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件“4個(gè)人去的景點(diǎn)各不相同,事件甲獨(dú)自去一個(gè)景點(diǎn),則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案