【題目】有一塊半徑為 ( 是正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個矩形的游泳池 和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰 ,其中 為圓心, , 在圓的直徑上, , , 在半圓周上,如圖.設(shè) ,征地面積為 ,當(dāng) 滿足 取得最大值時,開發(fā)效果最佳,開發(fā)效果最佳的角 和 的最大值分別為( )
A.
B.
C.
D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[﹣3,0)∪(0,3]上的奇函數(shù),當(dāng)x∈(0,3]時,f(x)的圖象如圖所示,那么滿足不等式f(x)≥2x﹣1 的x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,已知E為棱CC1上的動點.
(1)求證:A1E⊥BD;
(2)是否存在這樣的E點,使得平面A1BD⊥平面EBD?若存在,請找出這樣的E點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,設(shè) .
(1)求函數(shù)g(x)的表達式,并求函數(shù)g(x)的定義域;
(2)判斷函數(shù)g(x)的奇偶性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有2000名網(wǎng)購者在11月11日當(dāng)天于某購物網(wǎng)站進行網(wǎng)購消費(消費金額不超過1000元),其中有女士1100名,男士900名、該購物網(wǎng)站為優(yōu)化營銷策略,根據(jù)性別采用分層抽樣的方法從這2000名網(wǎng)購者中抽取200名進行分析,如下表:(消費金額單位:元) 女士消費情況:
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 10 | 25 | 35 | 30 | x |
男士消費情況:
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 15 | 30 | 25 | y | 5 |
附:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(K2= ,n=a+b+c+d)
(1)計算x,y的值;在抽出的200名且消費金額在[800,1000](單位:元)的網(wǎng)購者中隨機選出兩名發(fā)放網(wǎng)購紅包,求選出的兩名網(wǎng)購者都是男士的概率;
(2)若消費金額不低于600元的網(wǎng)購者為“網(wǎng)購達人”,低于600元的網(wǎng)購者為“非網(wǎng)購達人”,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“是否為‘網(wǎng)購達人’與性別有關(guān)?”
女士 | 男士 | 總計 | |
網(wǎng)購達人 | |||
非網(wǎng)購達人 | |||
總計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程記錄的產(chǎn)量 (噸)與相應(yīng)的生產(chǎn)能耗 (噸標準煤)的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
參考公式:
(1)已知產(chǎn)量 和能耗 呈線性關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 關(guān)于 的線性回歸方程 ;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)耗能為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解各校《國學(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為A、B、C、D四個等級.隨機調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如下的分布圖:
(Ⅰ)試確定圖中 與 的值;
(Ⅱ)若將等級A、B、C、D依次按照 分、80分、60分、50分轉(zhuǎn)換成分數(shù),試分別估計兩校學(xué)生國學(xué)成績的均值;
(Ⅲ)從兩校獲得A等級的同學(xué)中按比例抽取5人參加集訓(xùn),集訓(xùn)后由于成績相當(dāng),決定從中隨機選2人代表本市參加省級比賽,求兩人來自同一學(xué)校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一高中經(jīng)過層層上報,被國家教育部認定為2015年全國青少年足球特色學(xué)校.該校成立了特色足球隊,隊員來自高中三個年級,人數(shù)為50人.視力對踢足球有一定的影響,因而對這50人的視力作一調(diào)查.測量這50人的視力(非矯正視力)后發(fā)現(xiàn)他們的視力全部介于4.75和5.35之間,將測量結(jié)果按如下方式分成6組:第一組[4.75,4.85),第二組[4.85,4.95),…,第6組[5.25,5.35],如圖是按上述分組方法得到的頻率分布直方圖.又知:該校所在的省中,全省喜愛足球的高中生視力統(tǒng)計調(diào)查數(shù)據(jù)顯示:全省100000名喜愛足球的高中生的視力服從正態(tài)分布N(5.01,0.0064). 參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,
P(μ﹣2σ<ξ≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.
(1)試評估該校特色足球隊人員在全省喜愛足球的高中生中的平均視力狀況;
(2)求這50名隊員視力在5.15以上(含5.15)的人數(shù);
(3)在這50名隊員視力在5.15以上(含5.15)的人中任意抽取2人,該2人中視力排名(從高到低)在全省喜愛足球的高中生中前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,+∞)上的增函數(shù),實數(shù)a使得f(1﹣ax﹣x2)<f(2﹣a)對于任意x∈[0,1]都成立,則實數(shù)a的取值范圍是( )
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2 )
D.[0,1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com