設(shè)雙曲線C:-y2=1(a>0)與直線l:x+y=1交于兩個(gè)不同的點(diǎn)A,B,求雙曲線C的離心率e的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044
設(shè)雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B.
(Ⅰ)求雙曲線C的離心率e的取值范圍;
(Ⅱ)設(shè)直線l與y軸的交點(diǎn)為P,且=.求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市進(jìn)才中學(xué)2007屆高三文科月考六數(shù)學(xué)試題 題型:044
設(shè)雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B.
(1)求a的取值范圍:
(2)設(shè)直線l與y軸的交點(diǎn)為P,且.求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:選修設(shè)計(jì)數(shù)學(xué)1-1北師大版 北師大版 題型:044
設(shè)雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B.
(1)求雙曲線C的離心率e的取值范圍;
(2)設(shè)直線l與y軸的交點(diǎn)為P,取=,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省、臨川一中高三8月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)雙曲線C:-y2=1的左、右頂點(diǎn)分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點(diǎn)P、Q.
(1)若直線m與x軸正半軸的交點(diǎn)為T,且·=1,求點(diǎn)T的坐標(biāo);
(2)求直線A1P與直線A2Q的交點(diǎn)M的軌跡E的方程;
(3)過點(diǎn)F(1,0)作直線l與(2)中的軌跡E交于不同的兩點(diǎn)A、B,設(shè)=λ·,若λ∈[-2,-1],求|+|(T為(1)中的點(diǎn))的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山西省高三2月月考文科數(shù)學(xué)試卷 題型:選擇題
設(shè)雙曲線C:-y2=1的右焦點(diǎn)為F,直線l過點(diǎn)F且斜率為k,若直線l與雙曲線C的左、右兩支都相交,則直線l的斜率的取值范圍是
A、k≤-或k≥ B、k<-或k> C、-<k< D、-≤k≤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com