精英家教網 > 高中數學 > 題目詳情
設函數F(x)=
f(x) ,f(x)≥g(x)
g(x) ,f(x)<g(x)
,其中f(x)=log2(x2+1),g(x)=log2(|x|+7).
(1)在實數集R上用分段函數形式寫出函數F(x)的解析式;
(2)求函數F(x)的最小值.
(1)F(x)=
log2(x2+1) ,log2(x2+1) ≥log2(|x|+7)
log2(|x|+7) ,log2(x2+1) <log2(|x|+7)
,(1分)
令log2(x2+1)≥log2(|x|+7),得x2-|x|-6≥0,(3分)
解得:x≤-3或x≥3,(5分)∴F(x)=
log2(x2+1),x≥3或x≤-3
log2(|x|+7),-3<x<3
.(8分)
(寫出F(x)=
log2(x2+1),x2+1≥|x|+7
log2(|x|+7),x2+1<|x|+7
4分)
(2)當x≥3或x≤-3時,F(xiàn)(x)=log2(x2+1),設u=x2+1≥10,y=log2u在[10,+∞)上遞增,所以F(x)min=log210(10分);(說明:設元及單調性省略不扣分)
同理,當-3<x<3,F(xiàn)(x)min=log27;(12分)
又log27<log210∴x∈R時,F(xiàn)(x)min=log27.(14分)
或因為F(x)是偶函數,所以只需要考慮x≥0的情形,(9分)
當0≤x<3,F(xiàn)(x)=log2(x2+7),當x=0時,F(xiàn)(x)min=log27;(11分)
當x≥3時,F(xiàn)(x)=log2(x2+1),當x=3時,F(xiàn)(x)min=log210;(12分)∴x∈R時,F(xiàn)(x)min=log27.(14分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)在R上可導,其導函數為f′(x),且函數y=(1-x)f′(x)的圖象如圖所示,則函數f(x)有下列結論中一定成立的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=loga(1-x),g(x)=loga(1+x)(a>0且a≠1).
(1)設F(x)=f(x)-g(x),判斷F(x)的奇偶性并證明;
(2)若關于x的方程ag(-x2+x+1)=af(m)-x有兩個不等實根,求實數m的范圍;
(3)若a>1且在x∈[0,1]時,f(m-2x)>
12
g(x)
恒成立,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案