在區(qū)間(0,1)內(nèi)任取兩個數(shù),則這兩個數(shù)之和小于
1
2
的概率是( 。
A、
1
2
B、
1
4
C、
1
8
D、
1
16
考點:幾何概型
專題:概率與統(tǒng)計
分析:本題考查的知識點是幾何概型的意義,關鍵是要找出(0,1)中隨機地取出兩個數(shù)所對應的平面區(qū)域的面積,及兩數(shù)之和小于
1
2
對應的平面圖形的面積大小,再代入幾何概型計算公式,進行解答.
解答: 解:設取出兩個數(shù)為x,y;則
0<x<1 
0<y<1
,
若這兩數(shù)之和小于
1
2
,則有
0<x<1
0<y<1
x+y<
1
2

根據(jù)幾何概型,原問題可以轉(zhuǎn)化為求不等式組表示的區(qū)域的面積之比問題,
如圖所示;當兩數(shù)之和小于
1
2
時,對應點落在陰影上,
∵S陰影=
1
2
×
1
2
×
1
2
=
1
8
,
故在區(qū)間(0,1)中隨機地取出兩個數(shù),
則兩數(shù)之和小于
1
2
的概率P=
1
8
1
=
1
8

故選:C.
點評:幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關,而與形狀和位置無關.解決的步驟均為:求出滿足條件A的基本事件對應的“幾何度量”N(A),再求出總的基本事件對應的“幾何度量”N,最后根據(jù)P=
N(A)
N
求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=x+1,i是虛數(shù)單位,復數(shù)
f(1+ai)
1-i
為純虛數(shù),則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=tanx-
1
x
在區(qū)間(0,
π
2
)內(nèi)的零點個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|3-|x-2|≥0},B={y|y≥2},則A∩B=( 。
A、∅B、[2,5]
C、[-1,5]D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(sin
4
,cos
4
)落在角θ的終邊上,且θ∈[0,2π),則tan(θ+
π
3
)的值為( 。
A、
3
+3
B、
3
-3
C、2+
3
D、2-
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0<x<2},B={x|y=
1-x2
},則A∪∁RB=( 。
A、(0,1)
B、(1,2)
C、(-∞,-1)∪(0,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個判斷:
①某校高三(1)班的人和高三(2)班的人數(shù)分別是m和n,某次測試數(shù)學平均分分別是a,b,則這兩個班的數(shù)學平均分為
a+b
2
;
②對兩個變量y和x進行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…,(xn,yn),由樣本數(shù)據(jù)得到回歸方程
?
y
=
?
b
x+
?
a
必過樣本點的中心(
.
x
,
.
y
)
;
③調(diào)查某單位職工健康狀況,其青年人數(shù)為300,中年人數(shù)為150,老年人數(shù)為100,現(xiàn)考慮采用分層抽樣,抽取容量為22的樣本,則青年中應抽取的個體數(shù)為12;
④對分類變量X與Y的隨機變量K2的觀測值k,k越小,“X與Y有關系”的把握程度越大.
其中正確的個數(shù)有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,則“a=1”是“函數(shù)f(x)=(a-1)x3+(a2-1)x2+x為奇函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(
x
2
-
π
3
).
(1)求函數(shù)f(x)的周期和單調(diào)增區(qū)間;
(2)求不等式
1
2
≤f(x)≤
3
2
的解集.

查看答案和解析>>

同步練習冊答案