【題目】如圖所示,過拋物線C:y2=2px(p>0)的焦點(diǎn)F作直線交C于A、B兩點(diǎn),過A、B分別向C的準(zhǔn)線l作垂線,垂足為A′,B′,已知四邊形AA′B′F與BB′A′F的面積分別為15和7,則△A′B′F的面積為

【答案】6
【解析】解:設(shè)△A′B′F的面積為S,直線AB:x=my+ ,代入拋物線方程,消元可得y2﹣2pmy﹣p2=0 設(shè)A(x1 , y1) B(x2 , y2),則y1y2=﹣p2 , y1+y2=2pm
SAA'F= |AA'|×|y1|= |x1+ ||y1|= + )|y1|
SBB'F= |BB'|×|y2|= |x2+ ||y2|= + )|y2|
+ )|y1 + )|y2|= + + )= (m2+1)
SA′B′F= |y1﹣y2|= =S
∵四邊形AA′B′F與BB′A′F的面積分別為15和7
(m2+1)=(15﹣S)(7﹣S)
S2=(15﹣S)(7﹣S)
S2﹣22S+105=0
∴S=6
所以答案是:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1:x2+y2﹣3x﹣3y+3=0,圓C2:x2+y2﹣2x﹣2y=0.
(1)求兩圓的公共弦所在的直線方程及公共弦長.
(2)求過兩圓交點(diǎn)且面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y滿足約束條件 ,若z=ax+y的最大值為4,則a=(
A.3
B.2
C.﹣2
D.﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l交橢圓4x2+5y2=80于M、N兩點(diǎn),橢圓的上頂點(diǎn)為B點(diǎn),若△BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線l的方程是(
A.5x+6y﹣28=0
B.5x﹣6y﹣28=0
C.6x+5y﹣28=0
D.6x﹣5y﹣28=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x , x∈[﹣1,1],函數(shù)g(x)=[f(x)]2﹣2af(x)+3.
(1)當(dāng)a=0時(shí),求函數(shù)g(x)的值域;
(2)若函數(shù)g(x)的最小值為h(a),求h(a)的表達(dá)式;
(3)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2 , m2]?若存在,求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一動(dòng)圓經(jīng)過點(diǎn)且與直線相切,設(shè)該動(dòng)圓圓心的軌跡方程為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)是曲線上的動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為,點(diǎn),軸上,的內(nèi)切圓的方程為,將表示成的函數(shù),并求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)P(4,﹣1)且與直線3x﹣4y+6=0垂直的直線方程是(
A.4x+3y﹣13=0
B.4x﹣3y﹣19=0
C.3x﹣4y﹣16=0
D.3x+4y﹣8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,正三角形所在平面與菱形所在的平面垂直, 平面,且.

(1)判斷直線平面的位置關(guān)系,并說明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C同時(shí)滿足下列三個(gè)條件:①與y軸相切;②在直線y=x上截得弦長為2 ;③圓心在直線x﹣3y=0上.求圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案