經(jīng)過拋物線y2=4x的焦點(diǎn),且以數(shù)學(xué)公式為方向向量的直線的方程是________.

x-y-1=0
分析:求出拋物線y2=4x的焦點(diǎn),求出直線l的斜率,用點(diǎn)斜式求直線方程,并化為一般式..
解答:拋物線y2=4x的焦點(diǎn)為(1,0),方向向量為 =(1,1)的直線l的斜率為 1,
故直線l的方程是 y-0=1×(x-1),即 x-y-1=0,
故答案為:x-y-1=0.
點(diǎn)評(píng):本題考查用點(diǎn)斜式求直線方程的方程,拋物線的簡單性質(zhì),確定斜率是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過拋物線y2=4x的焦點(diǎn),且方向向量為
a
=(1,2)的直線l的方程是( 。
A、x-2y-1=0
B、2x+y-2=0
C、x+2y-1=0
D、2x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓c關(guān)于y軸對(duì)稱,經(jīng)過拋物線y2=4x的焦點(diǎn),且被直線y=x分成兩段弧長之比為1:2,求圓c的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π4
的直線l經(jīng)過拋物線y2=4x的焦點(diǎn),且與拋物線相交于A、B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知直線l經(jīng)過拋物線y2=4x的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn).
(1)若|AF|=4,求點(diǎn)A的坐標(biāo);
(2)若直線l的傾斜角為45°,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過拋物線y2=4x的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn).
(1)若|AF|=4,求點(diǎn)A的坐標(biāo);
(2)設(shè)直線l的斜率為k,當(dāng)線段AB的長等于5時(shí),求k的值.
(3)求拋物線y2=4x上一點(diǎn)P到直線2x-y+4=0的距離的最小值.并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案