A. | [0,2] | B. | (-∞,0]∪[2,+∞) | C. | [2,+∞) | D. | [-$\frac{1}{2}$,1) |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到$\frac{y-1}{x+1}$的最小值,然后求解絕對(duì)值不等式即可..
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
設(shè)k則k的幾何意義為區(qū)域內(nèi)的點(diǎn)到Q(-1,1)的斜率,
由圖象可知AB的斜率最大,此時(shí)$\frac{y-1}{x+1}$的最小值為:1,
則使|m-1|>$\frac{y-1}{x+1}$恒成立,可得|m-1|≥1,
解得m≤0或m≥2,
故選:B.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用以及直線斜率的求解,利用目標(biāo)函數(shù)的幾何意義結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,4] | B. | [0,4] | C. | [0,1] | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$(2n-1) | B. | $\frac{1}{24}$(2n+4) | C. | $\frac{1}{24}$(4n-1) | D. | $\frac{1}{16}$(4n-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3] | B. | (0,3] | C. | (-∞,3] | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$ | B. | $\overrightarrow{AD}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$ | C. | $\overrightarrow{AD}=-\frac{3}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$ | D. | $\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com