13.已知M(-5,0),N(5,0)是平面上的兩點,若曲線C上至少存在一點P,使|PM|=|PN|+6,則稱曲線C為“黃金曲線”.下列五條曲線:
①$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1;      ②y2=4x;        ③$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1;④$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1;      ⑤x2+y2-2x-3=0
其中為“黃金曲線”的是②⑤.(寫出所有“黃金曲線”的序號)

分析 根據(jù)雙曲線的定義,可得點P的軌跡是以M、N為焦點,2a=6的雙曲線,由此算出所求雙曲線的方程.再分別將雙曲線與五條曲線聯(lián)立,通過解方程判斷是否有交點,由此可得答案.

解答 解:∵點M(-5,0),N(5,0),點P使|PM|-|PN|=6,
∴點P的軌跡是以M、N為焦點,2a=6的雙曲線,可得b2=c2-a2=52-32=16,
則雙曲線的方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1(x>0),
對于①,兩方程聯(lián)立,無解.則①錯;
對于②,聯(lián)立y2=4x和$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1(x>0),解得x=$\frac{9+3\sqrt{73}}{8}$成立,則②成立;
對于③,聯(lián)立$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1和$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1(x>0),無解,則③錯;
對于④,聯(lián)立$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1和$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1(x>0),無解,則④錯;
對于⑤,聯(lián)立x2+y2-2x-3=0和$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1(x>0),化簡得25x2-18x-171=0,
由韋達定理可得兩根之積小于0,必有一個正根,則⑤成立.
故答案為:②⑤.

點評 本題考查雙曲線的定義和方程,考查聯(lián)立曲線方程求交點,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ x-y≥0\\ 2x-y-2≥0\end{array}\right.$,則使|m-1|>$\frac{y-1}{x+1}$恒成立的m的取值范圍是( 。
A.[0,2]B.(-∞,0]∪[2,+∞)C.[2,+∞)D.[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c,則“A≤B”是sinA≤sinB的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$sinx+cosy=\frac{1}{3}$,則cosy+sin2x-1的最大值為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線x+my+m=0,將x2-6x+y2+4y+5=0分成1:2兩段弧,則m為( 。
A.4或-4B.3或-5C.2或-6D.1或-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個玻璃瓶中裝有大小相等質(zhì)地均勻顏色各不相同的玻璃小球共3個,現(xiàn)隨機的倒出小球(至少倒出一個),倒后重新將倒出小球裝回原瓶中,進行下一次操作.現(xiàn)通過倒玻璃球走跳棋游戲,規(guī)則如下:棋盤上標(biāo)有第0站,第1站,第2站…一枚棋子開始停在第0站,棋手將玻璃瓶中的小球倒出,若倒出的小球是奇數(shù)個,將棋子向前走一步;若倒出的小球是偶數(shù)個,則將棋子向前走兩步.然后將倒出的小球裝回原玻璃瓶,準(zhǔn)備下一次操作.設(shè)棋子跳到第n站(n∈N*)的概率為Pn,已知P0=1.
(1)求倒出的小球是奇數(shù)個的概率;
(2)求P1、P2
(3)證明:數(shù)列$\{{P_n}-{P_{n-1}}\},n∈{N^*}$是等比數(shù)列,并求Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\frac{x-1}{x-a}$在區(qū)間[3,+∞)上是減函數(shù),則a的取值范圍是(  )
A.[1,3)B.(1,3)C.(1,3]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知AB是圓C:(x+2)2+(y-l)2=$\frac{2}{5}$的一條直徑,若楠圓x2+4y2=4b2(b∈R)經(jīng)過 A、B 兩點,則該橢圓的方程是$\frac{{x}^{2}}{\frac{216}{25}}+\frac{{y}^{2}}{\frac{54}{25}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集為U=R,集合A={x||x|≤2},B={x|$\frac{1}{x-1}$>0},則(∁UA)∩B=(  )
A.[-2,1]B.(2,+∞)C.(1,2]D.(-∞,-2)

查看答案和解析>>

同步練習(xí)冊答案