【題目】已知三棱錐S﹣ABC的各頂點都在一個半徑為r的球面上,且SA=SB=SC=1,AB=BC=AC=,則球的表面積為( 。

A. 12π B. C. D.

【答案】D

【解析】試題分析:由題意一個三棱錐S﹣ABC的三條側(cè)棱SA、SB、SC兩兩互相垂直,可知,三棱錐是正方體的一個角,擴展為正方體,兩者的外接球相同,正方體的對角線就是球的直徑,求出直徑即可求出球的表面積.

詳解:三棱錐S﹣ABC中,SA=SB=SC=1,AB=BC=AC=,

共頂點S的三條棱兩兩相互垂直,且其長均為1,

三棱錐的四個頂點同在一個球面上,三棱錐是正方體的一個角,擴展為正方體,

三棱錐的外接球與正方體的外接球相同,正方體的對角線就是球的直徑,

所以球的直徑為:,半徑為,

外接球的表面積為:4π×(2=3π.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線過點(3,-2)且與橢圓4x2+9y2=36有相同的焦點.

(I)求雙曲線的標(biāo)準(zhǔn)方程.

(II)若點M在雙曲線上, 是雙曲線的左、右焦點,且|MF1|+|MF2|=試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分))

某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿場售價與上市時間的關(guān)系用圖一的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖二的拋物線段表示。

)寫出圖一表示的市場售價與時間的函數(shù)關(guān)系式;寫出圖二表示的種植成本與上市時間的函數(shù)關(guān)系式;

)假如設(shè)定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?(注:市場售價和種植成本的單位:元/102㎏,時間單位:天)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對任何的正整數(shù)n都成立,則的值為( 。

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達式為(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=b2,b5,ba14成等比數(shù)列.

(1)求數(shù)列{an}、{bn}的通項公式;

(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , .

(1)在平面內(nèi)找一點,使得直線平面,并說明理由;

(2)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形, 平面 , 中點.

(I)證明: 平面

(II)證明: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為矩形, , 平面平面, 、分別為、的中點.

)求證:

)求證: 平面

)若過的平面交于點,交,求證:

查看答案和解析>>

同步練習(xí)冊答案