【題目】對任意實數(shù)a,b,c,給出下列命題:

①“”是“”的充要條件

②“是無理數(shù)”是“a是無理數(shù)”的充要條件;

③“”是“”的充分不必要條件

④“”是“”的必要不充分條件,

其中真命題的個數(shù)為(

A.1B.2C.3D.4

【答案】B

【解析】

依次判斷每個選項:得到,①不正確;根據(jù)無理數(shù)定義知②正確;若,不滿足,所以③不正確;根據(jù)必要不充分條件定義知④正確,得到答案.

,即,故,所以的充分不必要條件,所以①不正確;

是無理數(shù),∵5是有理數(shù),所以a是無理數(shù);a是無理數(shù),則是無理數(shù),故“是無理數(shù)”是“a是無理數(shù)”的充要條件,所以②正確;

③若,則得,不是充分條件,所以③不正確;

推不出,若,則,故“”是“”的必要不充分條件,所以④正確;

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年東京夏季奧運會將設(shè)置米男女混合泳接力這一新的比賽項目,比賽的規(guī)則是:每個參賽國家派出22女共計4名運動員比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿米且由一名運動員完成, 每個運動員都要出場. 現(xiàn)在中國隊確定了備戰(zhàn)該項目的4名運動員名單,其中女運動員甲只能承擔(dān)仰泳或者自由泳,男運動員乙只能承擔(dān)蝶泳或自由泳,剩下的男女各一名運動員則四種泳姿都可以上,那么中國隊共有( )種兵布陣的方式.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性

(2)若存在兩個極值點,,,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角,的對邊分別為,,,已知 ,.

(1)求角

(2)若點滿足,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學(xué)成績在的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學(xué)平均分;

3)若規(guī)定90分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在80分及其以上的試卷中任取2份分析學(xué)生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎。抽獎規(guī)則如下:1、抽獎方案有以下兩種:方案,從裝有1個紅球、2個白球(僅顏色不同)的甲袋中隨機摸出1個球,若是紅球,則獲得獎金15元,否則,沒有獎金,兌獎后將摸出的球放回甲袋中;方案,從裝有2個紅、1個白球(僅顏色不同)的乙袋中隨機摸出1個球,若是紅球,則獲得獎金10元,否則,沒有獎金,兌獎后將摸出的球放回乙袋中。

抽獎條件是:顧客購買商品的金額滿100元,可根據(jù)方案抽獎一;滿足150元,可根據(jù)方案抽獎(例如某顧客購買商品的金額為310元,則該顧客采用的抽獎方式可以有以下三種,根據(jù)方案抽獎三次或方案抽獎兩次或方案各抽獎一次)。已知顧客在該商場購買商品的金額為250元。

(1)若顧客只選擇根據(jù)方案進行抽獎,求其所獲獎金為15元的概率;

(2)當(dāng)若顧客采用每種抽獎方式的可能性都相等,求其最有可能獲得的獎金數(shù)(0元除外)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學(xué)、外語3個科目成績和高中學(xué)業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學(xué)、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.

(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;

(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績達(dá)到二級的概率都是0.8,且三人約定如果達(dá)到二級不參加第二次考試,達(dá)不到二級參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯誤的是( )

A.命題“,”的否定是“,”.

B.中,.

C.已知某6個數(shù)據(jù)的平均數(shù)為3,方差為2,現(xiàn)又加入一個新數(shù)據(jù)3,則此時這7個數(shù)的平均數(shù)和方差不變.

D.從裝有完全相同的4個紅球和2個黃球的盒子中任取2個小球,則事件“至多一個紅球”與“都是紅球”互斥且對立.

查看答案和解析>>

同步練習(xí)冊答案