如圖,在△ABC中,已知∠B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6.
(1)求∠ADB的大?
(2)求AB的長(zhǎng)?
考點(diǎn):余弦定理,正弦定理
專(zhuān)題:三角函數(shù)的求值
分析:(1)在三角形ADC中,利用余弦定理表示出cos∠ADC,將三邊長(zhǎng)代入求出cos∠ADC的值,確定出∠ADC的度數(shù),即可確定出∠ADB的度數(shù);
(2)在三角形ABD中,由AD,∠B與∠ADB的度數(shù),利用正弦定理即可求出AB的長(zhǎng).
解答: 解:(1)在△ADC中,AD=10,AC=14,DC=6,
由余弦定理得cos∠ADC=
AD2+DC2-AC2
2AD•DC
=
100+36-196
2×10×6
=-
1
2

∴∠ADC=120°,
∴∠ADB=60°;
(2)在△ABD中,AD=10,∠B=45°,∠ADB=60°,
由正弦定理得
AB
sin∠ADB
=
AD
sinB
,
∴AB=
AD•sin∠ADB
sinB
=
10sin60°
sin45°
=
10×
3
2
2
2
=5
6
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一只不透明的口袋中裝有形狀、大小、質(zhì)地都相同的8只小球,其中3只白球,3只紅球和2只黃球,現(xiàn)從中一次隨機(jī)摸出2只球.求:
(1)2只球都是紅球的概率;
(2)2只球不同顏色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①cos213°+cos273°-cos13°cos73°;
②cos215°+cos275°-cos15°cos75°;
③cos240°+cos2100°-cos40°cos100°;
④cos2(-30°)+cos230°-cos(-30°)cos30°;
⑤cos2(-12°)+cos248°-cos(-12°)cos48°.
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在幾何體ABCDE中,BE⊥平面ABC,CD∥BE,△ABC是等腰直角三角形,∠ABC=90°,且BE=AB=2,CD=1,點(diǎn)F是AE的中點(diǎn).建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用空間向量方法解答以下問(wèn)題:
(Ⅰ)求證:DF∥平面ABC;
(Ⅱ)求AB與平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知l1為函數(shù)f(x)=x2(x∈[0,2])在P(t,t2)(t∈(0,2))處的切線,l2為x=2,f(x),l1,l2與x軸所圍成的圖形如圖所示.
(1)請(qǐng)用t表示S1+S2=g(t);
(2)求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)平面α過(guò)坐標(biāo)原點(diǎn)O,
n
=(1,2,3)是平面α的一個(gè)法向量,求P(-1,2,0)到平面α的距離;
(2)直線l過(guò)A(2,2,1),
s
=(-1,0,1)
是直線l的一個(gè)方向向量,求P(0,2,2)到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)n為不小于3的正整數(shù),公差為1的等差數(shù)列a1,a2,…,an和首項(xiàng)為1的等比數(shù)列b1,b2,…,bn滿(mǎn)足b1<a1<b2<a2<…<bn<an,求正整數(shù)n的最大值;
(2)對(duì)任意給定的不小于3的正整數(shù)n,證明:存在正整數(shù)x,使得等差數(shù)列{an}:xn+xn-1-1,xn+2xn-1-1,…,xn+nxn-1-1和等比數(shù)列{bn}:xn,(1+x)xn-1,…,x(1+x)n-1滿(mǎn)足b1<a1<b2<a2<…<bn<an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)焦點(diǎn)F1(-2,0),右焦點(diǎn)到直線l:x=
a2
a2-b2
的距離為6.
(1)求橢圓C的方程;
(2)若M為直線l上一點(diǎn),A為橢圓C的左頂點(diǎn),連結(jié)AM交橢圓于點(diǎn)P,求
|PM|
|AP|
的取值范圍;
(3)設(shè)橢圓C另一個(gè)焦點(diǎn)為F2,在橢圓上是否存在一點(diǎn)T,使得
1
|TF1|
,
1
|F1F2|
1
|TF2|
 成等差數(shù)列?若存在,求出點(diǎn)T的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x2(x>0)
2(x=0)
0(x<0)
,則f(f(f(-2)))的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案