【題目】如圖,三棱柱的側面是正方形,平面平面,,,點上,,的中點.

Ⅰ)求證平面

Ⅱ)判斷平面與平面是否垂直,直接寫出結論,不必說明理由;

Ⅲ)求二面角的余弦值.

【答案】(Ⅰ)證明見解析(Ⅱ)平面平面Ⅲ)

【解析】

Ⅰ)連結,因為為中點,所以,利用線面平行的判定定理即可證出

Ⅱ)首先利用面面垂直的判定定理即可得出結論.

Ⅲ)建立空間直角建立坐標系,分別求出平面的一個法向量、平面的一個法向量,利用空間向量的數(shù)量積即可求解.

Ⅰ)如圖所示,

連結,因為為中點,所以,

又因為平面, 平面,

所以平面.

Ⅱ)平面平面.

Ⅲ)如圖建立坐標系,設,,,

設平面的一個法向量為,則,

,則,同理可得平面的一個法向量為,

所以,

因為二面角為銳二面角,

所以求二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,曲線在點處的切線與直線平行,求的值;

2)若,且函數(shù)的值域為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

1)討論的單調區(qū)間;

2)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016高考新課標II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題:

,則的逆否命題為真命題

函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件

③若為假命題,則均為假命題

④對于命題,,則為:,

其中真命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一研學實踐活動小組利用課余時間,對某公司1月份至5月份銷售某種產品的銷售量及銷售單價進行了調查,月銷售單價(單位:元)和月銷售量(單位:百件)之間的一組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

月銷售單價(元)

1.6

1.8

2

2.2

2.4

月銷售量(百件)

10

8

7

6

4

1)根據(jù)15月份的數(shù)據(jù),求出關于的回歸直線方程;

2)預計在今后的銷售中,月銷售量與月銷售單價仍然服從(1)中的關系,若該種產品的成本是1/件,那么該產品的月銷售單價應定為多少元才能獲得最大月利潤?(注:利潤=銷售收入-成本)

(回歸直線方程,其中.參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“干支紀年法”是中國歷法上自古以來就一直使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按照干支順序相配,構成了“干支紀年法”,其相配順序為:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60為一個周期,周而復始,循環(huán)記錄.按照“干支紀年法”,中華人民共和國成立的那年為己丑年,則2013年為(

A.甲巳年B.壬辰年C.癸巳年D.辛卯年

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù).

1)證明:在定義域上存在唯一的極大值點;

2)若存在,使,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,直線與函數(shù)的圖象在處相切,設,若在區(qū)間[1,2]上,不等式恒成立.則實數(shù)m( )

A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值

查看答案和解析>>

同步練習冊答案