精英家教網 > 高中數學 > 題目詳情
在三棱錐中,是等腰直角三角形,中點. 則與平面所成的角等于(  )
A.B.C.D.
B

試題分析:先作PO⊥平面ABC,垂足為O,根據條件可證得點O為三角形ABC的外心,從而確定點O為AC的中點,然后證明BO是面PAC的垂線,從而得到∠BEO為BE與平面PAC所成的角,在直角三角形BOE中求解即可。
解: 如圖:
作PO⊥平面ABC,垂足為O,則∠POA=∠POB=∠POC=90°,,而PA=PB=PC,PO是△POA、△POB、△POC的公共邊,∴△POA≌△POB≌△POC,∴AO=BO=CO,則點O為三角形ABC的外心,∵△ABC是等腰直角三角形,∠ABC=90°,∴點O為AC的中點,則BO⊥AC,而PO⊥BO,PO∩AC=O,∴BO⊥平面PAC,連接OE,∴∠BEO為BE與平面PAC所成的角,∵點O為AC的中點,E為PC中點,PA=PB=PC=AC=1,ABC是等腰直角三角形,∠ABC=90°,∴OE為中位線,且OE=,BO=又∵∠BOE=90°,∴∠BEO=45°即BE與平面PAC所成的角的大小為45°,故選B.
點評:本題主要考查了三角形的外心的概念,以及直線與平面所成角和三角形全等等有關知識,同時考查了推理能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在四邊形中,,點為線段上的一點.現將沿線段翻折到(點與點重合),使得平面平面,連接,.

(Ⅰ)證明:平面;
(Ⅱ)若,且點為線段的中點,求二面角的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在正三棱柱ABC-A1B1C1中,AB=2.若二面角C-AB-C1的大小為60°,則異面直線A1B1和BC1所成角的余弦值為
 
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

為兩條不同的直線,是兩個不同的平面,下列命題正確的是
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知平面和直線,給出下列條件:①;②;③;④;⑤.則使成立的充分條件是      .(填序號)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側棱PC上的動點。

(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當點E在何位置時,BD⊥AE?證明你的結論;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)如圖,正三棱柱中,D是BC的中點,

(Ⅰ)求證:;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點。

(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖:在底面為直角梯形的四棱錐P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.

(1)求證:BD⊥平面PAC
(2)求二面角B-PC-A的大小.

查看答案和解析>>

同步練習冊答案