【題目】已知,如圖,曲線由曲線:和曲線:組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.
(Ⅰ)若,求曲線的方程;
(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;
(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求面積的最大值.
【答案】(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).
【解析】
(Ⅰ)由,可得,解出即可;
(Ⅱ)設點,設直線,與橢圓方程聯(lián)立可得:,利用,根與系數(shù)的關系、中點坐標公式,證明即可;
(Ⅲ)由(Ⅰ)知,曲線,且,設直線的方程為:,與橢圓方程聯(lián)立可得: ,利用根與系數(shù)的關系、弦長公式、三角形的面釈計算公式、基本不等式的性質(zhì),即可求解.
(Ⅰ)由題意:,
,解得,
則曲線的方程為:和.
(Ⅱ)證明:由題意曲線的漸近線為:,
設直線,
則聯(lián)立,得,
,解得:,
又由數(shù)形結(jié)合知.
設點,
則,,
,,
,即點在直線上.
(Ⅲ)由(Ⅰ)知,曲線,點,
設直線的方程為:,
聯(lián)立,得:,
,
設,
,,
,
面積,
令,,
當且僅當,即時等號成立,所以面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】
設函數(shù)
(Ⅰ)若是函數(shù)的極值點,1和是的兩個不同零點,且
且,求的值;
(Ⅱ)若對任意, 都存在( 為自然對數(shù)的底數(shù)),使得
成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,關于的方程有兩個不同的實數(shù)解,,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(mR)的導函數(shù)為.
(1)若函數(shù)存在極值,求m的取值范圍;
(2)設函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(1)求橢圓的標準方程;
(2)過點作圓的切線,切點分別為,直線與軸交于點,過點的直線交橢圓于兩點,點關于軸的對稱點為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關注“兩會”,某機構隨機抽取了年齡在歲之間的200人進行調(diào)查.并按年齡繪制的頻率分布直方圖如圖所示,把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年人”和“中老年人”經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)之比為,其中“青少年人”中有40人關注“兩會”,“中老年人”中關注“兩會”和不關注“兩會”的人數(shù)之比是.
(1)求圖中a,b的值;
(2)現(xiàn)采用分層抽樣在和中隨機抽取8名代表,從8人中任選2人,求2人中至少有1個是“中老年人”的概率是多少?
(3)根據(jù)已知條件,完成下面的列聯(lián)表,并根據(jù)此統(tǒng)計結(jié)果判斷:能否有的把握認為“中老年人”比“青少年人”更加關注“兩會”?
關注 | 不關注 | 合計 | |
青少年人 | |||
中老年人 | |||
合計 |
P(K2≥k0) | 0.50 | 0.40 | … | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1,點M、E分別是PA、PD的中點
(1)求證:CE//平面BMD
(2)點Q為線段BP中點,求直線PA與平面CEQ所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)①求函數(shù)的單調(diào)區(qū)間;
②若滿足,且.求證: .
(2)函數(shù).若對任意,都有,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com