(2012•廣州二模)如圖,AB是圓O的直徑,延長(zhǎng)AB至C,使BC=2OB,CD是圓O的切線,切點(diǎn)為D,連接AD,BD,則面
AD
BD
的值為
2
2
分析:利用圓的切線構(gòu)造直角三角形,求得tan∠DOB=2
2
,再利用∠DOB=2∠A,即可得到結(jié)論.
解答:解:連接OD,則OD⊥CD,
∵BC=2OB,OB=OD,
∴OC=3OD,
∴DC=2
2
OD,
tan∠DOB=2
2

∵OA=OD,∴∠DOB=2∠A
tan2A=2
2

tan2A+
2
2
tanA-1=0

∴∴tan∠A=
2
2
(負(fù)值舍去)
∵AB是圓O的直徑,∴∠ADB=90°
AD
BD
=
1
tanA
=
=
2

故答案為:
2
點(diǎn)評(píng):本題考查圓的切線的性質(zhì),考查三角函數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)甲、乙、丙三種食物的維生素含量及成本如下表所示
食物類型
維生索C(單位/kg) 300 500 300
維生素D(單位/kg) 700 100 300
成本(元/k) 5 4 3
某工廠欲將這三種食物混合成100kg的混合食物,設(shè)所用食物甲、乙、丙的重量分別為x kg、y kg、z kg.
(1)試以x、y表示混合食物的成本P;
(2)若混合食物至少需含35000單位維生素C及40000單位維生素D,問(wèn)x、y、z取什么值時(shí),混合食物的成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)已知函數(shù)f(x)=(cosx+sinx)(cosx-sinx).
(1)求函數(shù)f(x)的最小正周期;
(2)若0<α<
π
2
,0<β<
π
2
,且f(
α
2
)=
1
3
,f(
β
2
)=
2
3
,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)在平行四邊形ABCD中,點(diǎn)E是AD的中點(diǎn),BE與AC相交于點(diǎn)F,若
EF
=m
AB
+n
AD
(m,n∈R)
,則
m
n
的值為
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(m,m+1),若
AB
OC
,則實(shí)數(shù)m的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)已知函數(shù)f(x)=ex-e-x+1(e是自然對(duì)數(shù)的底數(shù)),若f(a)=2,則f(-a)的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案