(2012•廣州二模)甲、乙、丙三種食物的維生素含量及成本如下表所示
食物類型
維生索C(單位/kg) 300 500 300
維生素D(單位/kg) 700 100 300
成本(元/k) 5 4 3
某工廠欲將這三種食物混合成100kg的混合食物,設(shè)所用食物甲、乙、丙的重量分別為x kg、y kg、z kg.
(1)試以x、y表示混合食物的成本P;
(2)若混合食物至少需含35000單位維生素C及40000單位維生素D,問x、y、z取什么值時(shí),混合食物的成本最少?
分析:(1)根據(jù)題意得出z=100-x-y,再利用甲、乙、丙三種食物的成本,即可求出混合食物的成本P;
(2)根據(jù)混合食物至少需含35000單位維生素C及40000單位維生素D,建立不等式組,再利用z=100-x-y,即可得到結(jié)論.
解答:解:(1)∵某食物營(yíng)養(yǎng)所想用x千克甲種食物,y千克乙種食物,z千克丙種食物配成100千克混合物,
∴z=100-x-y,
∴P=5x+4y+3z=5x+4y+3(100-x-y)=2x+y+300元;
(2)由題意可得:
300x+500y+300z≥35000
700x+100y+300z≥40000
,
又∵z=100-x-y,∴
y≥25
2x-y≥50

∴P=300+2x+y=300+(2x-y)+2y≥400,當(dāng)且僅當(dāng)x=37.5,y=25時(shí)等號(hào)成立,
所以當(dāng)x=37.5千克,y=25千克,z=37.5千克時(shí)成本最低,最低成本為400元.
點(diǎn)評(píng):本題主要考查了一次函數(shù)的應(yīng)用,解題關(guān)鍵是根據(jù)已知得出不等式關(guān)系式,再確定出最低成本.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州二模)已知函數(shù)f(x)=(cosx+sinx)(cosx-sinx).
(1)求函數(shù)f(x)的最小正周期;
(2)若0<α<
π
2
,0<β<
π
2
,且f(
α
2
)=
1
3
,f(
β
2
)=
2
3
,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州二模)在平行四邊形ABCD中,點(diǎn)E是AD的中點(diǎn),BE與AC相交于點(diǎn)F,若
EF
=m
AB
+n
AD
(m,n∈R)
,則
m
n
的值為
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州二模)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(m,m+1),若
AB
OC
,則實(shí)數(shù)m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州二模)已知函數(shù)f(x)=ex-e-x+1(e是自然對(duì)數(shù)的底數(shù)),若f(a)=2,則f(-a)的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案