【題目】已知數(shù)列的前項(xiàng)和為,且滿足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.
(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;
(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.
【答案】(1) 證明過程見解析 (2) (3)
【解析】
(1)由,再得出,兩式作差,得出,,再分奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別求通項(xiàng)公式即可得解;
(2)由等差數(shù)列的等差中項(xiàng)可得恒成立,可得,解得;
(3)由已知有,由裂項(xiàng)求和法求數(shù)列前項(xiàng)和得,由分離變量最值法可得,運(yùn)算即可得解.
解:(1)因?yàn)?/span>,①
所以,②
②-①得:,
由易得,即,
即,,
即數(shù)列的奇數(shù)項(xiàng)是以為首項(xiàng),4為公比的等比數(shù)列,偶數(shù)項(xiàng)是以為首項(xiàng),4為公比的等比數(shù)列,
當(dāng)為奇數(shù)時,,
當(dāng)為偶數(shù)時,,
綜上可得,
又,
故是等比數(shù)列,且數(shù)列的通項(xiàng)公式.
(2)因?yàn)?/span>,
所以,
因?yàn)閿?shù)列是等差數(shù)列,
所以恒成立,
即有恒成立,
即,
解得;
(3)因?yàn)?/span>=,
即,
又對任意的存在實(shí)數(shù),使得,
即對任意的 恒成立,
又當(dāng)時,取最小值3,時,,
即,
故實(shí)數(shù)的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計課程 | 不喜歡統(tǒng)計課程 | 合計 | |
男生 | 20 | 10 | 30 |
女生 | 10 | 20 | 30 |
合計 | 30 | 30 | 60 |
(1)判斷是否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計”課程與性別有關(guān)?
(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個樣本,從中任選3人,求恰有2個男生和1個女生的概率.
下面的臨界值表供參考:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動”是手機(jī)推出的多款健康運(yùn)動軟件中的一款,某學(xué)校140名老師均在微信好友群中參與了“微信運(yùn)動”,對運(yùn)動10000步或以上的老師授予“運(yùn)動達(dá)人”稱號,低于10000步稱為“參與者”,為了解老師們運(yùn)動情況,選取了老師們在4月28日的運(yùn)動數(shù)據(jù)進(jìn)行分析,統(tǒng)計結(jié)果如下:
運(yùn)動達(dá)人 | 參與者 | 合計 | |
男教師 | 60 | 20 | 80 |
女教師 | 40 | 20 | 60 |
合計 | 100 | 40 | 140 |
(Ⅰ)根據(jù)上表說明,能否在犯錯誤概率不超過0.05的前提下認(rèn)為獲得“運(yùn)動達(dá)人”稱號與性別有關(guān)?
(Ⅱ)從具有“運(yùn)動達(dá)人”稱號的教師中,采用按性別分層抽樣的方法選取10人參加全國第四屆“萬步有約”全國健走激勵大賽某賽區(qū)的活動,若從選取的10人中隨機(jī)抽取3人作為代表參加開幕式,設(shè)抽取的3人中女教師人數(shù)為,寫出的分布列并求出數(shù)學(xué)期望.
參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個頂點(diǎn)和兩個焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點(diǎn),試問,是否存在軸上的點(diǎn),使得對任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)企業(yè)為確定下一年度投入某種產(chǎn)品的研發(fā)費(fèi)用,統(tǒng)計了近年投入的年研發(fā)費(fèi)用千萬元與年銷售量千萬件的數(shù)據(jù),得到散點(diǎn)圖1,對數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計量的值如圖2:
(1)利用散點(diǎn)圖判斷和哪一個更適合作為年研發(fā)費(fèi)用和年銷售量的回歸類型(不必說明理由),并根據(jù)數(shù)據(jù),求出與的回歸方程;
(2)已知企業(yè)年利潤千萬元與的關(guān)系式為(其中為自然對數(shù)的底數(shù)),根據(jù)(1)的結(jié)果,要使得該企業(yè)下一年的年利潤最大,預(yù)計下一年應(yīng)投入多少研發(fā)費(fèi)用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).
(1)設(shè)直線,的斜率分別為,,求證:常數(shù);
(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);
②當(dāng)的內(nèi)切圓的面積為時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | |||
女性市民 | |||
合計 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.
附:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com