【題目】已知向量,,且函數(shù).若函數(shù)的圖象上兩個(gè)相鄰的對(duì)稱(chēng)軸距離為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若方程在時(shí),有兩個(gè)不同實(shí)數(shù)根,,求實(shí)數(shù)的取值范圍,并求出的值;
(Ⅲ)若函數(shù)在的最大值為2,求實(shí)數(shù)的值.
【答案】(Ⅰ);(Ⅱ),;(Ⅲ)或
【解析】
(Ⅰ)根據(jù)三角恒等變換公式化簡(jiǎn),根據(jù)周期計(jì)算,從而得出的解析式;(Ⅱ)求出在,上的單調(diào)性,計(jì)算最值和區(qū)間端點(diǎn)函數(shù)值,從而得出的范圍,根據(jù)對(duì)稱(chēng)性得出的值;(Ⅲ)令,求出的范圍和關(guān)于的二次函數(shù),討論二次函數(shù)單調(diào)性,根據(jù)最大值列方程求出的值.
(Ⅰ)∵,,
∴
若函數(shù)的圖象上兩個(gè)相鄰的對(duì)稱(chēng)軸距離為,
則函數(shù)的周期,
∴,即,
∴
(Ⅱ)由(Ⅰ)知,,
當(dāng)時(shí),
∴若方程在有兩個(gè)不同實(shí)數(shù)根,則.
∴令,,則,,
∴函數(shù)在內(nèi)的對(duì)稱(chēng)軸為,
∵,是方程,的兩個(gè)不同根,
∴
(Ⅲ)因?yàn)?/span>,所以,
令,則.∴
又∵,由得,
∴.
(1)當(dāng),即時(shí),可知在上為減函數(shù),
則當(dāng)時(shí),
由,解得:,不合題意,舍去.
(2)當(dāng),即時(shí),結(jié)合圖象可知,當(dāng)時(shí),,
由,解得,滿(mǎn)足題意.
(3)當(dāng),即時(shí),知在上為增函數(shù),
則時(shí),,由得,舍去
綜上,或為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1) 若,求曲線(xiàn)在處的切線(xiàn)方程;
(2)求函數(shù)單調(diào)區(qū)間
(3) 若有兩個(gè)零點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線(xiàn)下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店聽(tīng)其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.
(個(gè)) | 2 | 3 | 4 | 5 | 6 |
(百萬(wàn)元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過(guò)初步判斷,可用線(xiàn)性回歸模型擬合與的關(guān)系,求關(guān)于的線(xiàn)性回歸方程;
(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線(xiàn)性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)設(shè)函數(shù)f(x)=|x﹣ |+|x﹣a|,x∈R,若關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的最大值;
(2)已知正數(shù)x,y,z滿(mǎn)足x+2y+3z=1,求 + + 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
平面直角坐標(biāo)系xOy中,曲線(xiàn)C:.直線(xiàn)l經(jīng)過(guò)點(diǎn)P(m,0),且傾斜角為.O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)寫(xiě)出曲線(xiàn)C的極坐標(biāo)方程與直線(xiàn)l的參數(shù)方程;
(Ⅱ)若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),且|PA|·|PB|=1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱中,為的中點(diǎn).
(1)求證:;
(2)若點(diǎn)為四邊形內(nèi)部及其邊界上的點(diǎn),且三棱錐的體積為三棱柱體積的,試在圖中畫(huà)出點(diǎn)的軌跡,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com