考點(diǎn):數(shù)列遞推式,數(shù)列的函數(shù)特性
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:(1)由數(shù)列遞推式可得數(shù)列{b
n}為公比是16的等比數(shù)列,求出其通項(xiàng)公式后可得
=4n-1,然后由等比數(shù)列的前n項(xiàng)和求得T
n,再由作差法證明T
n+12>T
n•T
n+2;
(2)由S
n=2n
2+2n+2求出首項(xiàng),進(jìn)一步得到n≥2時(shí)的通項(xiàng)公式,再把數(shù)列{a
n},{b
n}的通項(xiàng)公式代入c
n=a
n-log
db
n=4n+(4-4n)log
d2=(4-4log
d2)n+4log
d2,然后由一次項(xiàng)系數(shù)大于0求得d的取值范圍.
解答:
解:(1)由b
n+1=16b
n,得數(shù)列{b
n}為公比是16的等比數(shù)列,
又b
1=1,∴
bn=16n-1,因此
=4n-1,
則
Tn=++…+=
=(4n-1),
∵T
n+12-T
n•T
n+2 =
(1-4n+1)2-(1-4n)(1-4n+2)=4n>0.
于是T
n+12>T
n•T
n+2;
(2)由S
n=2n
2+2n+2,當(dāng)n=1時(shí)求得a
1=S
1=4;
當(dāng)n≥2時(shí),
an=Sn-Sn-1=2n2+2n-2(n-1)2-2(n-1)=4n.
a
1=4滿足上式,∴a
n=4n.
可得c
n=a
n-log
db
n=4n+(4-4n)log
d2=(4-4log
d2)n+4log
d2,
要使數(shù)列{c
n}是遞增數(shù)列,則4-4log
d2>0,即log
d2<1.
當(dāng)0<d<1時(shí),有l(wèi)og
d2<0恒成立,當(dāng)d>1時(shí),有d>2.
綜上,d∈(0,1)∪(2,+∞).
點(diǎn)評:本題考查了等比關(guān)系的確定,考查了數(shù)列的函數(shù)特性,考查了對數(shù)不等式的解法,是中檔題.