11.設(shè)F為拋物線C:y2=3x的焦點(diǎn),過F且傾斜角為30°的直線交拋物線C于A,B兩點(diǎn),則|AB|=12.

分析 由拋物線方程求出焦點(diǎn)坐標(biāo),由直線的傾斜角求出斜率,寫出過A,B兩點(diǎn)的直線方程,和拋物線方程聯(lián)立后化為關(guān)于x的一元二次方程,由根與系數(shù)關(guān)系得到A,B兩點(diǎn)橫坐標(biāo)的和,代入拋物線過焦點(diǎn)的弦長公式得答案.

解答 解:由y2=3x,得2p=3,p=$\frac{3}{2}$,
則F($\frac{3}{4}$,0),
∴過A,B的直線方程為y=$\frac{\sqrt{3}}{3}$(x-$\frac{3}{4}$),
聯(lián)立$\left\{\begin{array}{l}{{y}^{2}=3x}\\{y=\frac{\sqrt{3}}{3}(x-\frac{3}{4})}\end{array}\right.$,得16x2-168x+9=0.
設(shè)A(x1,y1),B(x2,y2),
則${x}_{1}+{x}_{2}=\frac{168}{16}=\frac{21}{2}$,
∴|AB|=${x}_{1}+{x}_{2}+p=\frac{21}{2}+\frac{3}{2}=12$.
故答案為:12.

點(diǎn)評 本題考查直線與圓錐曲線的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法,涉及直線和圓錐曲線關(guān)系問題,常采用聯(lián)立直線和圓錐曲線,然后利用一元二次方程的根與系數(shù)關(guān)系解題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xoy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,直線l與x軸交于點(diǎn)E,與橢圓C交于A、B兩點(diǎn).當(dāng)直線l垂直于x軸且點(diǎn)E為橢圓C的右焦點(diǎn)時(shí),弦AB的長為$\frac{{2\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)是否存在點(diǎn)E,使得$\frac{1}{{E{A^2}}}+\frac{1}{{E{B^2}}}$為定值?若存在,請指出點(diǎn)E的坐標(biāo),并求出該定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{{x}^{2}+c}{ax}$(a>0,c<0),當(dāng)x∈[1,3]時(shí),函數(shù)f(x)的取值范圍恰為[-$\frac{3}{2}$,$\frac{5}{6}$].
(1)求函數(shù)f(x)的解析式;
(2)若向量$\overrightarrow{m}$=(-$\frac{1}{x}$,$\frac{1}{2}$),$\overrightarrow{n}$=(k2-k+2,3k-1)(k<0),解關(guān)于x的不等式f(x)<$\overrightarrow{m}$•$\overrightarrow{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線C:x2=16y的焦點(diǎn)為F,準(zhǔn)線為l,M是l上一點(diǎn),P是直線MF與C的一個交點(diǎn),若$\overrightarrow{FM}$=3$\overrightarrow{FP}$,則|PF|=(  )
A.$\frac{16}{3}$B.$\frac{8}{3}$C.$\frac{5}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.二項(xiàng)式($\frac{1}{\sqrt{x}}$-x210的展開式中的常數(shù)項(xiàng)是45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=lg$\frac{1+x}{1-x}$,則“x<$\frac{9}{11}$”是“f(x)<1成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知△ABC中,AB邊上的中線|CM|=2,若動點(diǎn)P滿足$\overrightarrow{AP}$=sin2θ$\overrightarrow{AM}$+cos2θ$\overrightarrow{AC}$(θ∈R),給出下列命題:①對?θ∈R,?λ∈R,使得$\overrightarrow{CP}$=λ$\overrightarrow{CM}$;②當(dāng)θ∈(-$\frac{π}{2}$,$\frac{π}{2}$)時(shí),存在唯一的θ,使$\overrightarrow{AP}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);③動點(diǎn)P在運(yùn)動的過程中,($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的取值范圍為[-2,0];④若|$\overrightarrow{AB}$|=2,動點(diǎn)P在運(yùn)動的過程中,|$\overrightarrow{AP}$|2+|$\overrightarrow{BP}$|2+|$\overrightarrow{CP}$|2的最小值為$\frac{8}{3}$.以上命題中,其中正確命題的序號為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知F1(-1,0),F(xiàn)2(1,0)為平面內(nèi)的兩個定點(diǎn),動點(diǎn)P滿足|PF1|+|PF2|=2$\sqrt{2}$,記點(diǎn)P的軌跡為曲線M.點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C是曲線M上的不同三點(diǎn),且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$
(Ⅰ)求直線AB與OC的斜率之積;
(Ⅱ)當(dāng)直線AB過點(diǎn)F1時(shí),求直線AB、OC與x軸所圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,a+c=2b,A-C=60°,則sinB=$\frac{\sqrt{39}}{8}$.

查看答案和解析>>

同步練習(xí)冊答案