若直線和⊙O∶相離,則過點的直線與橢圓的交點個數(shù)為(    )

A. 至多一個   B.  2個    C.  1個    D. 0個

 

【答案】

B

【解析】

試題分析:由題意可得,,則,所以點在以原點為圓心,以2為半徑的圓內的點,而橢圓的長半軸長為3,短半軸長為2,所以圓內切于橢圓,即點在橢圓內,所以過點的直線與橢圓一定相交,它們的公共點的個數(shù)為2,故選B.

考點:本題要求學生掌握直線與圓的位置關系,會用點到直線的距離公式化簡求值,以及掌握橢圓的簡單性質,考查了數(shù)形結合的思想方法.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2=
c2
4
(c是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經過兩點(1,
4
2
3
)
、(
3
3
2
,1)
,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經過一定點E,并求
OP
OE
的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題15分)

已知橢圓C:,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G: 是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.

(1)若橢圓C經過兩點,求橢圓C的方程;

(2)當為定值時,求證:直線MN經過一定點E,并求的值(O是坐標原點);

(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省泰州市姜堰市蔣垛中學高三(下)3月綜合測試數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:(c是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經過兩點,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經過一定點E,并求的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省揚州市高考數(shù)學三模試卷(解析版) 題型:解答題

已知橢圓C:,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:(c是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經過兩點,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經過一定點E,并求的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

同步練習冊答案