【題目】已知焦點在軸上的拋物線過點,橢圓的兩個焦點分別為,,其中與的焦點重合,過點與的長軸垂直的直線交于,兩點,且,曲線是以坐標(biāo)原點為圓心,以為半徑的圓.
(1)求與的標(biāo)準(zhǔn)方程;
(2)若動直線與相切,且與交于,兩點,求的面積的取值范圍.
【答案】(1) 的標(biāo)準(zhǔn)方程為.的標(biāo)準(zhǔn)方程為.(2)
【解析】
(1)先由已知設(shè)拋物線的方程為,根據(jù)拋物線過點,即可求出拋物線方程,得出坐標(biāo),再由題意可得,進(jìn)而可求出橢圓方程;又曲線是以坐標(biāo)原點為圓心,以為半徑的圓,根據(jù)坐標(biāo)坐標(biāo)得出的值,即可寫出圓的標(biāo)準(zhǔn)方程;
(2)先由直線與相切,得圓心到直線的距離為1,因此,根據(jù)題意分類討論:當(dāng)直線的斜率不存在和斜率存在兩種情況,結(jié)合韋達(dá)定理和弦長公式,分別求出的范圍即可.
解:(1)由已知設(shè)拋物線的方程為,
則,解得,即的標(biāo)準(zhǔn)方程為.
則,不妨設(shè)橢圓的方程為,
由,得,所以,
又,所以,,
故的標(biāo)準(zhǔn)方程為.
易知,所以的標(biāo)準(zhǔn)方程為.
(2)因為直線與相切,所以圓心到直線的距離為1.所以.
當(dāng)直線的斜率不存在時,其方程為,易知兩種情況所得到的的面積相等.
由,得.
不妨設(shè),,則,
此時.
當(dāng)直線的斜率存在時,設(shè)其方程為,
則,即.
由,得,
所以 恒成立.
設(shè),,
則,.
所以.
令,則,
所以
,
令,則,
易知區(qū)間上單調(diào)遞減,所以.
綜上,的面積的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年12月1日,貴陽市地鐵一號線全線開通,在一定程度上緩解了出行的擁堵狀況.為了了解市民對地鐵一號線開通的關(guān)注情況,某調(diào)查機(jī)構(gòu)在地鐵開通后的某兩天抽取了部分乘坐地鐵的市民作為樣本,分析其年齡和性別結(jié)構(gòu),并制作出如下等高條形圖:
根據(jù)圖中(歲以上含歲)的信息,下列結(jié)論中不一定正確的是( )
A. 樣本中男性比女性更關(guān)注地鐵一號線全線開通
B. 樣本中多數(shù)女性是歲以上
C. 歲以下的男性人數(shù)比歲以上的女性人數(shù)多
D. 樣本中歲以上的人對地鐵一號線的開通關(guān)注度更高
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽獎活動中,有,,,,,共6人獲得抽獎機(jī)會,抽獎規(guī)則如下:若獲一等獎后不再參加抽獎,獲得二等獎的仍參加三等獎抽獎.現(xiàn)在主辦方先從6人中隨機(jī)抽取2人均獲一等獎,再從余下的4人中隨機(jī)抽取1人獲二等獎,最后還從這4人中隨機(jī)抽取1人獲三等獎.
(1)求能獲一等獎的概率;
(2)若,已獲一等獎,求能獲獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若關(guān)于的不等式在上恒成立,求的取值范圍;
(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷在上是否存在極值.若存在,判斷極值的正負(fù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).
(1)求的值;
(2)不等式在上恒成立,求實數(shù)的取值范圍;
(3)方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點分別為,,,為橢圓上的兩動點,且以,,,四個點為頂點的凸四邊形的面積的最大值為.
(1)求橢圓的離心率;
(2)若橢圓經(jīng)過點,且直線的斜率是直線,的斜率的等比中項,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,,四邊形為矩形,平面平面,,點在線段上運(yùn)動,且.
(1)當(dāng)時,求異面直線與所成角的大小;
(2)設(shè)平面與平面所成二面角的大小為(),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是矩形,,,,且.
(1)求證:平面平面;
(2)設(shè)是的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com