【題目】設(shè)橢圓,右頂點(diǎn)是,離心率為.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn)(不同于點(diǎn)),若,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).
【答案】(1); (2).
【解析】
(1)由橢圓右頂點(diǎn)的坐標(biāo)為A(2,0),離心率,可得a,c的值,由此可得橢圓C的方程;(2)當(dāng)直線斜率不存在時(shí),設(shè),易得,當(dāng)直線斜率存在時(shí),直線,與橢圓方程聯(lián)立,得,由可得,從而得證.
(1)右頂點(diǎn)是,離心率為,
所以,∴,則,
∴橢圓的標(biāo)準(zhǔn)方程為.
(2)當(dāng)直線斜率不存在時(shí),設(shè),
與橢圓方程聯(lián)立得:,,
設(shè)直線與軸交于點(diǎn),,即,
∴或 (舍),
∴直線過(guò)定點(diǎn);
當(dāng)直線斜率存在時(shí),設(shè)直線斜率為,,則直線,與橢圓方程聯(lián)立,得,
,,,
,
,則,
即,
∴,
∴或,
∴直線或,
∴直線過(guò)定點(diǎn)或舍去;
綜上知直線過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游區(qū)每年各個(gè)月份接待游客的人數(shù)近似地滿足周期性規(guī)律,因而第個(gè)月從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來(lái)刻畫(huà),其中正整數(shù)表示月份且,例如表示1月份,和是正整數(shù),,. 統(tǒng)計(jì)發(fā)現(xiàn),該地區(qū)每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
① 每年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
② 該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差400人;
③ 2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試根據(jù)已知信息,求的表達(dá)式;
(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)在400或400以上時(shí),該地區(qū)也進(jìn)入了一年中的旅游“旺季”,那么,一年中的哪幾個(gè)月是該地區(qū)的旅游“旺季”?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M:與軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線與圓M相切,為切點(diǎn),求四邊形面積的最小值.
【答案】(1) (2) (3)
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令,得到關(guān)于的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問(wèn)題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1) ∵圓M:與軸相切
∴ ∴
(2) 令,則 ∴
∴
(3)
∵的最小值等于點(diǎn)到直線的距離,
∴ ∴
∴四邊形面積的最小值為.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓與軸交于, 兩點(diǎn),設(shè)直線的方程為.
(1)當(dāng)直線與圓相切時(shí),求直線的方程;
(2)已知直線與圓相交于, 兩點(diǎn).
(。┤,求實(shí)數(shù)的取值范圍;
(ⅱ)直線與直線相交于點(diǎn),直線,直線,直線的斜率分別為, , ,
是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象為,則以下結(jié)論中正確的是__________.(寫出所有正確結(jié)論的編號(hào))
①圖象關(guān)于直線對(duì)稱;
②圖象關(guān)于點(diǎn)對(duì)稱;
③函數(shù)在區(qū)間內(nèi)是增函數(shù);
④由的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為F1,F2,離心率為,設(shè)過(guò)點(diǎn)F2的直線l被橢圓C截得的線段為MN,當(dāng)l⊥x軸時(shí),|MN|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在一點(diǎn)P,使得當(dāng)l變化時(shí),總有PM與PN所在的直線關(guān)于x軸對(duì)稱?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對(duì)于任意的,恒成立,求實(shí)數(shù)的取值范圍;
(III)設(shè)函數(shù), ,過(guò)點(diǎn)作函數(shù)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列,求數(shù)列的所有項(xiàng)之和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是衡量空氣污染程度的一個(gè)指標(biāo),為了了解市空氣質(zhì)量情況,從年每天的值的數(shù)據(jù)中隨機(jī)抽取天的數(shù)據(jù),其頻率分布直方圖如圖所示.將值劃分成區(qū)間、、、,分別稱為一級(jí)、二級(jí)、三級(jí)和四級(jí),統(tǒng)計(jì)時(shí)用頻率估計(jì)概率 .
(1)根據(jù)年的數(shù)據(jù)估計(jì)該市在年中空氣質(zhì)量為一級(jí)的天數(shù);
(2)按照分層抽樣的方法,從樣本二級(jí)、三級(jí)、四級(jí)中抽取天的數(shù)據(jù),再?gòu)倪@個(gè)數(shù)據(jù)中隨機(jī)抽取個(gè),求僅有二級(jí)天氣的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩陣.
(1)求直線在對(duì)應(yīng)的變換作用下所得的曲線方程;
(2)求矩陣的特征值與特征向量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b,c為實(shí)數(shù),f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個(gè)數(shù),則下列結(jié)論不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com