【題目】函數(shù)的圖象為,則以下結(jié)論中正確的是__________.(寫出所有正確結(jié)論的編號)
①圖象關(guān)于直線對稱;
②圖象關(guān)于點(diǎn)對稱;
③函數(shù)在區(qū)間內(nèi)是增函數(shù);
④由的圖象向右平移個單位長度可以得到圖象.
【答案】②③
【解析】
利用正弦函數(shù)f(x)=3sin(2x)的性質(zhì),對①②③④四個選項(xiàng)逐一判斷即可.
∵f(x)=3sin(2x),
①:由2xkπ(k∈Z)得:x(k∈Z),
∴f(x)=3sin(2x)的對稱軸方程為:x(k∈Z),
當(dāng)k=0時,x,k=﹣1時,x,
∴圖象C關(guān)于直線x對稱是錯誤的,即①錯誤;
②:∵f()=3sin(2)=0,
∴圖象C關(guān)于點(diǎn)(,0)對稱,即②正確;
③:由2kπ2x2kπ得:kπx≤kπ(k∈Z),
∴f(x)=3sin(2x)的增區(qū)間為[kπ,kπ](k∈Z),
當(dāng)k=0時,[,]為其一個增區(qū)間,故③正確;
④:將y=3sin2x的圖象向右平移個單位長度可以得到y=3sin2(x)=3sin(2x)≠3sin(2x)=f(x),故④錯誤.
綜上所述,②③正確.
故答案為:②③.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊(duì)與隊(duì)未踢過, 隊(duì)與隊(duì)也未踢過,則在第一周的比賽中, 隊(duì)踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(1)若函數(shù)與函數(shù)在處有相同的切線,求實(shí)數(shù)的值;
(2)若,且,證明: ;
(3)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑。若三棱錐P-ABC為鱉臑,PA⊥面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個頂點(diǎn)都在球的球面上,則球0的表面積為( )
A. 8πB. 12πC. 20πD. 24π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題P:不等式的解集中的整數(shù)有且僅有-1,0,1.求a的取值范圍.
命題Q:集合且.
(1)分別求命題P、Q為真命題時的實(shí)數(shù)a的取值范圍;
(2)當(dāng)實(shí)數(shù)a取何值時,命題P、Q中有且僅有一個為真命題;
(3)設(shè)P、Q皆為真時a的取值范圍為集合S,,若全集,,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一個函數(shù)的是( ).
A.y=x+1和y=B.y=x0和y=C.f(x)=(x-1)2和g(x)=(x+1)2D.f(x)=和g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2﹣2x.
(1)求出函數(shù)f(x)在R上的解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是實(shí)數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,在上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com