如圖所示,指出長(zhǎng)方體ABCD-A1B1C1D1中,各個(gè)面所在的平面與棱AA1所在直線的位置關(guān)系.

答案:
解析:

解:因?yàn)?/span>A∈平面AB1,A1∈平面AB1,所以AA1平面AB1

  同理AA1平面AD1

  因?yàn)?/span>A∈平面AC,A1平面AC,所以AA1平面AC(因?yàn)槿绻?/span>AA1平面AC,則點(diǎn)A1∈平面AC).所以AA1∩平面AC=A

  同理AA1∩平面A1C1=A1

  最后我們?cè)賮?lái)研究直線AA1與平面BC1的關(guān)系

  因?yàn)?/span>AA1平面AB1,所以AA1的所有的點(diǎn)都在平面AB1內(nèi).由于平面AB1∩平面BC1=BB1,所以如果直線AA1與平面BC1有交點(diǎn),那么它一定在直線BB1上,但已知AA1BB1,所以直線AA1BB1沒(méi)有公共點(diǎn).這就是說(shuō),直線AA1與平面BC1沒(méi)有公共點(diǎn),即:

  AA1∥平面BC1,同理AA1∥平面CD1


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,過(guò)A1、C1、B三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后,得到如圖所示的幾何體ABCD-A1B1C1D1,且這個(gè)幾何體的體積為
403

(1)求棱A1A的長(zhǎng);
(2)若線段AC與BD交于點(diǎn)E,求證:D1E∥平面A1C1B;
(3)在線段BC1上是否存在點(diǎn)P,使直線A1P與C1D垂直,如果存在,指出線段C1P的長(zhǎng),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖所示,指出長(zhǎng)方體ABCD-A1B1C1D1中,各個(gè)面所在的平面與棱AA1所在直線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示為長(zhǎng)方體ABCD-A′B′C′D′,當(dāng)用平面BCFE把這個(gè)長(zhǎng)方體分成兩部分后,各部分形成的多面體還是棱柱嗎?如果不是,請(qǐng)說(shuō)明理由;若是,指出底面及側(cè)棱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省淮安市高一第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)如圖所示,在一張邊長(zhǎng)為20cm的正方形鐵皮的4個(gè)角上,各剪去一個(gè)邊長(zhǎng)是cm的小正方形,折成一個(gè)容積是的無(wú)蓋長(zhǎng)方體鐵盒,試寫出用表示的函數(shù)關(guān)系式,并指出它的定義域。

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案