【題目】如圖,四邊形與四邊形都是直角梯形,,,四邊形為菱形,

1)求證:平面平面;

2)若二面角的余弦值為,求的長.

【答案】1)見解析(22

【解析】

1)取中點(diǎn),連,連,可證得平面,可得在菱形中,,可得平面,同時(shí)可證得四邊形是平行四邊形,則,可得平面,可得證明;

2)以所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,由空間向量法及二面角的余弦值為,可得的長.

證明(1):取中點(diǎn),連,連

,

,,平面

平面,

在菱形中,

,平面平面

分別是的中點(diǎn),,,

,,

四邊形是平行四邊形,則平面,

平面,平面平面

2)解:由(1)得平面,,

所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,

設(shè),則,,,,

設(shè)是平面的一個(gè)法向量,

,得,

設(shè)是平面的一個(gè)法向量,

,得

∵二面角的余弦值為

,解得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為的正方形中、分別為的中點(diǎn),沿將矩形折起使得,如圖2所示,點(diǎn)上,,分別為、中點(diǎn).

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)過點(diǎn).

1)求橢圓的方程;

2)設(shè)過橢圓的右焦點(diǎn),且傾斜角為的直線和橢圓交于、兩點(diǎn),對于橢圓上任一點(diǎn),若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進(jìn)行了一次問卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對的題數(shù),將統(tǒng)計(jì)結(jié)果分成,,,六組,得到如下頻率分布直方圖.

1)若答對一題得10分,未答對不得分,估計(jì)這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)若從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測量樹苗高度(單位:),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間內(nèi),將其按分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質(zhì)樹苗.

試驗(yàn)區(qū)

試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)樹苗

20

非優(yōu)質(zhì)樹苗

60

合計(jì)

1)求圖中的值,并估計(jì)這批樹苗高度的中位數(shù)和平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)已知所抽取的這120棵樹苗來自于兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如上列聯(lián)表:將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹苗與,兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由.

參考數(shù)據(jù):

0.15

010

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,過濾由核心部件濾芯來實(shí)現(xiàn).在使用過程中,濾芯需要不定期更換,其中濾芯每個(gè)200.如圖是根據(jù)100臺該款凈水器在十年使用期內(nèi)更換的濾芯的件數(shù)制成的柱狀圖.(以100臺凈水器更換濾芯的頻率代替1臺凈水器更換濾芯發(fā)生的概率)

1)估計(jì)一臺凈水器在使用期內(nèi)更換濾芯的件數(shù)的眾數(shù)和中位數(shù).

2)估計(jì)一臺凈水器在使用期內(nèi)更換濾芯的件數(shù)大于10的概率.

3)已知上述100臺凈水器在購機(jī)的同時(shí)購買濾芯享受5折優(yōu)惠(使用過程中如需再購買無優(yōu)惠),假設(shè)每臺凈水器在購機(jī)的同時(shí)購買濾芯10個(gè),這100臺凈水器在使用期內(nèi),更換濾芯的件數(shù)記為a,所需費(fèi)用記為y,補(bǔ)全下表,估計(jì)這100臺凈水器在使用期內(nèi)購買濾芯所需總費(fèi)用的平均數(shù).

100臺該款凈水器在試用期內(nèi)更換濾芯的件數(shù)a

9

10

11

12

頻數(shù)

費(fèi)用y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,左、右頂點(diǎn)分別為、,線段的長為4.點(diǎn)在橢圓上且位于第一象限,過點(diǎn)分別作,,直線,交于點(diǎn).

(1)若點(diǎn)的橫坐標(biāo)為-1,求點(diǎn)的坐標(biāo);

(2)直線與橢圓的另一交點(diǎn)為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點(diǎn)處的切線方程為,求的值;

2)當(dāng)時(shí),求證:;

3)設(shè)函數(shù),其中為實(shí)常數(shù),試討論函數(shù)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案