(本小題滿分12分)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場調(diào)查與預測, 甲產(chǎn)品
的利潤與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤與投資的算術(shù)平方根成正比, 其關(guān)系如
圖2 (注: 利潤與投資的單位: 萬元).
(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問: 怎樣分配這100萬元資金, 才能使企業(yè)獲得最大利潤, 其最大利潤為多少萬元?
科目:高中數(shù)學 來源: 題型:解答題
(12分)(2010·無錫模擬)已知f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1,試解不等式f(x)+f(x-8)≤2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
某地方政府為地方電子工業(yè)發(fā)展,決定對某一進口電子產(chǎn)品征收附加稅。已知這種電子產(chǎn)品國內(nèi)市場零售價為每件250元,每年可銷售40萬件,若政府征收附加稅率為t元時,則每年減少y萬件。
(1)收入表示為征收附加稅率的函數(shù);
(2)在該項經(jīng)營中每年征收附加稅金不低于600萬元,那么附加稅率應(yīng)控制在什么范圍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
下列四個判斷:
①;
②已知隨機變量X服從正態(tài)分布N(3,),P(X≤6)=0.72,則P(X≤0)=0.28;
③已知的展開式的各項系數(shù)和為32,則展開式中x項的系數(shù)為20;
④
其中正確的個數(shù)有:
A.1個 | B.2個 | C.3個 | D.4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
函數(shù)的定義域為開區(qū)間,其導函數(shù) 在內(nèi)的圖象如圖所示,則函數(shù)在開區(qū)間內(nèi)極小值點的個數(shù)為( )
A.1個 | B.2個 | C.3個 | D.4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商家經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個月能售出500kg;銷售單價每漲1元,月銷售量就減少10kg,針對這種銷售情況,
(1)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x的函數(shù)關(guān)系式;
商店想在月銷售成本不超過10000元的情況下,使得月銷售利潤不少于8000元,銷售單價應(yīng)定為多少元時,利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)若定義在上的函數(shù)同時滿足下列三個條件:
①對任意實數(shù)均有成立;
②;
③當時,都有成立。
(1)求,的值;
(2)求證:為上的增函數(shù)
(3)求解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)已知函數(shù)
(1)設(shè),若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;
(2)如果當時,不等式恒成立,求實數(shù)k的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com