(本小題滿分12分)
某地方政府為地方電子工業(yè)發(fā)展,決定對某一進(jìn)口電子產(chǎn)品征收附加稅。已知這種電子產(chǎn)品國內(nèi)市場零售價為每件250元,每年可銷售40萬件,若政府征收附加稅率為t元時,則每年減少y萬件。
(1)收入表示為征收附加稅率的函數(shù);
(2)在該項經(jīng)營中每年征收附加稅金不低于600萬元,那么附加稅率應(yīng)控制在什么范圍?

解:(1)y=250x*t%,這里x=40-,所以,所求函數(shù)關(guān)系為y=250(40-)*t%.
(2)依題意,250(40-)*t%≥600,即,所以10≤t≤15.即稅率應(yīng)控
制在10%到15%之間。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù),已知不論為何實數(shù)恒有,
(1)求證:
(2)求證:;
(3)若函數(shù)的最大值為8,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知某商品的價格上漲x%,銷售的數(shù)量就減少mx%,其中m為正的常數(shù)。
(1)當(dāng)m=時,該商品的價格上漲多少,就能使銷售的總金額最大?
(2)如果適當(dāng)?shù)貪q價,能使銷售總金額增加,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知,若函數(shù)在區(qū)間
的最大值為,最小值為,令.
(1)求的函數(shù)表達(dá)式;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場調(diào)查與預(yù)測, 甲產(chǎn)品
的利潤與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤與投資的算術(shù)平方根成正比, 其關(guān)系如
圖2 (注: 利潤與投資的單位: 萬元).
(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問: 怎樣分配這100萬元資金, 才能使企業(yè)獲得最大利潤, 其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)已知二次函數(shù)滿足:對任意實數(shù)x,都有,且當(dāng)時,有成立.  
(1)求;  
(2)若的表達(dá)式;
(3)設(shè),若圖上的點都位于直線的上方,求實
數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)
已知函數(shù) )
(1)若函數(shù)有最大值,求實數(shù)a的值;  (2)解不等式 (a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)上可導(dǎo),且,則函數(shù)的解析式為(   )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

定義在R上的函數(shù),若對任意,都
,則稱f(x)為“H函數(shù)”,給出下列函數(shù):①;②;③;④其中是“H函數(shù)”的個數(shù)為(      ).

A.4 B.3 C.2 D.1

查看答案和解析>>

同步練習(xí)冊答案