【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,則關(guān)于f(x)的說法正確的是(
A.對(duì)稱軸方程是x= +2kπ(k∈Z)
B.φ=﹣
C.最小正周期為π
D.在區(qū)間( , )上單調(diào)遞減

【答案】D
【解析】解:由函數(shù)圖象可得:A=1,周期T=2[ ﹣(﹣ )]=2π,可得C錯(cuò)誤,

可得:ω= = =1,

由點(diǎn)( ,0)在函數(shù)圖象上,可得:sin( +φ)=0,

解得:φ=kπ﹣ ,k∈Z,

又|φ|< ,可得:φ= ,故B錯(cuò)誤,

可得:f(x)=sin(x+ ).

令x+ =kπ+ ,k∈Z,解得函數(shù)的對(duì)稱軸方程為:x=kπ+ ,k∈Z,故A錯(cuò)誤;

令2kπ+ ≤x+ ≤2kπ+ ,k∈Z,解得:2kπ+ ≤x≤2kπ+ ,k∈Z,

可得函數(shù)的單調(diào)遞減區(qū)間為:[2kπ+ ,2kπ+ ],k∈Z,由于( [ , ],可得D正確.

故選:D.

由函數(shù)圖象可得A,周期T=2[ ﹣(﹣ )]=2π,可得C錯(cuò)誤,利用周期公式可求ω,由點(diǎn)( ,0)在函數(shù)圖象上,結(jié)合范圍|φ|< ,可得φ= ,可求B錯(cuò)誤,可求函數(shù)解析式,令x+ =kπ+ ,k∈Z,解得函數(shù)的對(duì)稱軸方程可求A錯(cuò)誤;令2kπ+ ≤x+ ≤2kπ+ ,k∈Z,解得函數(shù)的單調(diào)遞減區(qū)間即可判定D正確,從而得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水利工程隊(duì)相應(yīng)政府號(hào)召,計(jì)劃在韓江邊選擇一塊矩形農(nóng)田,挖土以加固河堤,為了不影響農(nóng)民收入,挖土后的農(nóng)田改造成面積為32400m2的矩形魚塘,其四周都留有寬3m的路面,問所選的農(nóng)田的長和寬各為多少時(shí),才能使占有農(nóng)田的面積最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)投擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,向量 與向量 的夾角記為α,則α 的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,各頂點(diǎn)都在同一球面上,若該棱柱的體積為 ,BC= ,AC=1,∠ACB=90°,則此球的體積等于(
A. π
B. π
C. π
D.8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=4x,過焦點(diǎn)F作與x軸垂直的直線l1 , C上任意一點(diǎn)P(x0 , y0)(y0≠0)處的切線為l,l與l1交于M,l與準(zhǔn)線交于N,則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法中錯(cuò)誤的是(
A.若p或q為假命題,則p、q均為假命題.
B.“x=1”是“x2﹣3x+2=0”的充分不必要條件.
C.命題“若x2﹣3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”.
D.對(duì)于命題p:存在x∈R使得x2+x+1<0,則非p:存在x∈R,使x2+x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求f(f( ));
(2)若x0滿足f(f(x0))=x0 , 且f(x0)≠x0 , 則稱x0為f(x)的二階不動(dòng)點(diǎn),求函數(shù)f(x)的二階不動(dòng)點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)是旅游消費(fèi)旺季,某大型商場通過對(duì)春節(jié)前后20天的調(diào)查,得到部分日經(jīng)濟(jì)收入Q與這20天中的第x天(x∈N+)的部分?jǐn)?shù)據(jù)如表:

天數(shù)x(天)

3

5

7

9

11

13

15

日經(jīng)濟(jì)收入Q(萬元)

154

180

198

208

210

204

190


(1)根據(jù)表中數(shù)據(jù),結(jié)合函數(shù)圖象的性質(zhì),從下列函數(shù)模型中選取一個(gè)最恰當(dāng)?shù)暮瘮?shù)模型描述Q與x的變化關(guān)系,只需說明理由,不用證明. ①Q(mào)=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)結(jié)合表中的數(shù)據(jù),根據(jù)你選擇的函數(shù)模型,求出該函數(shù)的解析式,并確定日經(jīng)濟(jì)收入最高的是第幾天;并求出這個(gè)最高值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點(diǎn).
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案