【題目】如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

【答案】
(1)證明:由正視圖可知:平面VAB⊥平面ABCD

連接BD交AC于O點,連接EO,

由已知得BO=OD,VE=EB

∴VD∥EO

又VD平面EAC,EO平面EAC

∴VD∥平面EAC;


(2)證明:設(shè)AB的中點為P,則VP⊥平面ABCD,建立如圖所示的坐標(biāo)系,

=(0,1,0)

設(shè)平面VBD的法向量為

∴由 ,可得 ,∴可取 =( ,1)

∴二面角A﹣VB﹣D的余弦值cosθ= =


【解析】(1)欲證VD∥平面EAC,根據(jù)直線與平面平行的判定定理可知只需證VD與平面EAC內(nèi)一直線平行即可,而連接BD交AC于O點,連接EO,由已知易得VD∥EO,VD平面EAC,EO平面EAC,滿足定理條件;(2)設(shè)AB的中點為P,則VP⊥平面ABCD,建立坐標(biāo)系,利用向量的夾角公式,可求二面角A﹣VB﹣D的余弦值.
【考點精析】關(guān)于本題考查的直線與平面平行的判定,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,則關(guān)于f(x)的說法正確的是(
A.對稱軸方程是x= +2kπ(k∈Z)
B.φ=﹣
C.最小正周期為π
D.在區(qū)間( , )上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x , g(x)=|x+a|﹣3,其中a∈R. (Ⅰ)若函數(shù)h(x)=f[g(x)]的圖象關(guān)于直線x=2對稱,求a的值;
(Ⅱ)給出函數(shù)y=g[f(x)]的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷錯誤的是(
A.命題“若xy=0,則x=0”的否命題為“若xy≠0,則x≠0”
B.命題“?x∈R,x2﹣x﹣1≤0”的否定是“
C.若p,q均為假命題,則p∧q為假命題
D.命題“?x∈[1,2],x2﹣a≤0”為真命題的一個充分不必要條件是a≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊, = ,且a+c=2.
(1)求角B;
(2)求邊長b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 與向量 的夾角為θ,且| |=1,| |=
(1)若 ,求 ;
(2)若 垂直,求θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)當(dāng)x∈[0, ]時,求f(x)的最大值、最小值以及取得最值時的x值;
(2)設(shè)g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實數(shù)x,y滿足x2+y2﹣2x+2 y+3=0,則x﹣ y的取值范圍是(
A.[2,+∞)
B.(2,6)
C.[2,6]
D.[﹣4,0]

查看答案和解析>>

同步練習(xí)冊答案