9.把數(shù)列{3n}(n∈N*)中的數(shù)按上小下大,左小右大的原則排成如圖所示三角形表:

設a(i,j)(i,j∈N*)是位于從上往下第i行且從左往右第j個數(shù),則a(37,6)=2016.

分析 由已知可得前36行共有1+2+3+…+36=666個數(shù),即a(37,6)為672個數(shù),再由數(shù)列的通項公式,可得答案.

解答 解:由已知可得前36行共有1+2+3+…+36=666個數(shù),
即a(37,6)為672個數(shù),
∴a(37,6)=672×3=2016,
故答案為:2016

點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知等比數(shù)列{an}中,a6=2,公比q>0,則log2a1+log2a2+log2a3+…+log2a11=11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0)
(1)若f(x+θ)是周期為2π的偶函數(shù).求ω及θ值;
(2)在(1)的條件下求函數(shù)f(x)在[-$\frac{π}{2}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.根據(jù)條件求拋物線的標準方程.
(1)拋物線的頂點在原點,以坐標軸為對稱軸,且焦點在直線x+y+2=0上;
(2)拋物線的頂點在原點,焦點是圓x2十y2-4x=0的圓心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+\frac{3}{4}(x≤0)}\\{lnx+a(x>0)}\end{array}\right.$的圖象在A,B兩點處的切線重合,則實數(shù)a的取值范圍為(-∞,ln2+$\frac{11}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.計算:
(1)(2$\frac{3}{5}$)0+2-2•(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+($\frac{25}{36}$)0.5+$\sqrt{(-2)^{2}}$;
(2)$\frac{1}{2}$1g$\frac{32}{49}$一$\frac{4}{3}$1g$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設A1,A2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸的兩個端點,P1,P2是垂直于x軸的直線與此橢圓的兩個交點,M為直線A1P1與A2P2的交點,求證:點M的軌跡方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{\stackrel{3x+y-3≥0}{x-1≤0}}\\{y-3≤0}\end{array}\right.$,則z=3x+5y的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=2x-5x則函數(shù)f(x)的零點所在區(qū)間可以為( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

同步練習冊答案