17.根據(jù)條件求拋物線的標準方程.
(1)拋物線的頂點在原點,以坐標軸為對稱軸,且焦點在直線x+y+2=0上;
(2)拋物線的頂點在原點,焦點是圓x2十y2-4x=0的圓心.

分析 (1)求出已知直線與坐標軸的交點A和B,在焦點分別為A和B的情況下設(shè)出拋物線標準方程,對照拋物線焦點坐標的公式求待定系數(shù),即可得到相應拋物線的方程.
(2)拋物線頂點在原點,圓x2十y2-4x=0的圓心是拋物線的焦點,故先求咄圓心,再求拋物線的方程即可.

解答 解:(1)直線x+y+2=0交x軸于點A(-2,0),與y軸交于點B(0,-2);
①當拋物線的焦點在A點時,設(shè)方程為y2=-2px,(p>0),可得2p=8,
∴拋物線方程為y2=-8x;
②當拋物線的焦點在B點時,設(shè)方程為x2=-2p'y,(p'>0),可得2p'=8,
∴拋物線方程為x2=-8y
綜上所述,得此拋物線方程為y2=-8x或x2=8y;
(2)由圓的方程x2十y2-4x=0,即(x-2)2+y2=4可知,圓心為F(2,0),
半徑為2,又由拋物線焦點為已知圓的圓心,得到拋物線焦點為F(2,0),
拋物線方程為y2=8x.

點評 本題給出拋物線的焦點坐標,求它的標準方程,著重考查了拋物線的標準方程和簡單幾何性質(zhì)等知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知△ABC的三邊分別為a、b、c,且S△ABC=$\frac{{a}^{2}+^{2}-{c}^{2}}{4}$,那么角C=45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.圓x2+y2-6y=0的圓心是(0,3),半徑是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知3cos2α+2cos2β=2cosα,求sin2α+cos2β取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.過拋物線y2=-4x的焦點,引傾斜角為120°的直線,交拋物線于A、B兩點,則△OAB的面積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下面幾個空間圖形中,虛線、實線使用不正確的有( 。
A.(2)(3)B.(1)(3)C.(3)(4)D.(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.把數(shù)列{3n}(n∈N*)中的數(shù)按上小下大,左小右大的原則排成如圖所示三角形表:

設(shè)a(i,j)(i,j∈N*)是位于從上往下第i行且從左往右第j個數(shù),則a(37,6)=2016.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若點A是不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,所表示的平面區(qū)域內(nèi)的一個動點,點B是直線y=1上的動點,O為坐標原點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最大值時的最優(yōu)解不唯一,則點B的橫坐標是1或-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$上有動P(m,n),則m+2n的取值范圍為[-6$\sqrt{2}$,6$\sqrt{2}$].

查看答案和解析>>

同步練習冊答案