【題目】在四棱中,底面為矩形,平面平面,===,=2,的中點(diǎn).

(Ⅰ)求證:;

(Ⅱ)求點(diǎn)到平面的距離.

【答案】(Ⅰ)見(jiàn)解析(Ⅱ).

【解析】(Ⅰ)∵PD=PC,E為CD的中點(diǎn),∴PECD,

∵平面PCD平面ABCD,∴PE平面ABCD,

∴PE⊥AC,(2分)

在Rt△BCE和Rt△ABC中,,∠ABC=∠BCE=90°,

∴Rt△BCE∽R(shí)t△ABC,

∴∠BAC=∠CBE,∠ACB=∠BEC,

∴∠EBC+∠ACB=∠CAB+∠ACB=90°,

∴BECA,(5分)

∵BE∩PE=E,

∴AC平面PBE,

.(6分)

(Ⅱ)設(shè)點(diǎn)到平面的距離為,連接AE,

在Rt△EBC中,CE=1,BC=,∴BE= =,

在Rt△ADE中,AD=,DE=1,∴=,

在Rt△PEA中,PA==2, (8分)

在Rt△PEB中,PB==2,

=,

,即,解得,

∴點(diǎn)到平面的距離為.(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷(xiāo)售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元,該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸,那么該企業(yè)可獲得最大利潤(rùn)是___________萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

1)當(dāng)時(shí),解不等式;

2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)調(diào)查了某班全部50名同學(xué)參加書(shū)法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)

參加書(shū)法社團(tuán)

未參加書(shū)法社團(tuán)

參加演講社團(tuán)

8

6

未參加演講社團(tuán)

6

30

(I)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一個(gè)社團(tuán)的概率;

(II)在既參加書(shū)法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1,A2,A3,A4A5,3名女同學(xué)B1B2,B3,現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后隨機(jī)投擲2枚正方體骰子,其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù),
(1)求點(diǎn)P(x,y)在直線(xiàn)y=x﹣1上的概率;
(2)求點(diǎn)P(x,y)滿(mǎn)足y2<4x的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)AB=6,在線(xiàn)段AB上任取兩點(diǎn)C、D(端點(diǎn)A、B除外),將線(xiàn)段AB分成三條線(xiàn)段AC、CD、DB.
(1)若分成的三條線(xiàn)段的長(zhǎng)度均為正整數(shù),求這三條線(xiàn)段可以構(gòu)成三角形(稱(chēng)為事件A)的概率;
(2)若分成的三條線(xiàn)段的長(zhǎng)度均為正實(shí)數(shù),求這三條線(xiàn)段可以構(gòu)成三角形(稱(chēng)為事件B)的概率;
(3)根據(jù)以下用計(jì)算機(jī)所產(chǎn)生的20組隨機(jī)數(shù),試用隨機(jī)數(shù)模擬的方法,來(lái)近似計(jì)算(2)中事件B的概率, 20組隨機(jī)數(shù)如下:

組別

1

2

3

4

5

6

7

8

9

10

X

0.52

0.36

0.58

0.73

0.41

0.6

0.05

0.32

0.38

0.73

Y

0.76

0.39

0.37

0.01

0.04

0.28

0.03

0.15

0.14

0.86

組別

11

12

13

14

15

16

17

18

19

20

X

0.67

0.47

0.58

0.21

0.54

0.64

0.36

0.35

0.95

0.14

Y

0.41

0.54

0.51

0.37

0.31

0.23

0.56

0.89

0.17

0.03

(X和Y都是0~1之間的均勻隨機(jī)數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】. 問(wèn):是否存在正數(shù)m,使得對(duì)于任意正數(shù),可使為三角形的三邊構(gòu)成三角形?如果存在:①試寫(xiě)出一組x,y,m的值,②求出所有m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線(xiàn),曲線(xiàn)為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線(xiàn),的極坐標(biāo)方程;

2)若射線(xiàn))分別交,兩點(diǎn), 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為選拔參加“央視猜燈謎大賽”的隊(duì)員,在校內(nèi)組織猜燈謎競(jìng)賽.規(guī)定:第一階段知識(shí)測(cè)試成績(jī)不小于分的學(xué)生進(jìn)入第二階段比賽.現(xiàn)有名學(xué)生參加知識(shí)測(cè)試,并將所有測(cè)試成績(jī)繪制成如下所示的頻率分布直方圖.

(1)估算這名學(xué)生測(cè)試成績(jī)的中位數(shù),并求進(jìn)入第二階段比賽的學(xué)生人數(shù);

(2)將進(jìn)入第二階段的學(xué)生分成若干隊(duì)進(jìn)行比賽.現(xiàn)甲、乙兩隊(duì)在比賽中均已獲得分,進(jìn)入最后強(qiáng)答階段.搶答規(guī)則:搶到的隊(duì)每次需猜條謎語(yǔ),猜對(duì)條得分,猜錯(cuò)條扣分.根據(jù)經(jīng)驗(yàn),甲隊(duì)猜對(duì)每條謎語(yǔ)的概率均為,乙隊(duì)猜對(duì)每條謎語(yǔ)的概率均為,猜對(duì)第條的概率均為.若這兩條搶到答題的機(jī)會(huì)均等,您做為場(chǎng)外觀眾想支持這兩隊(duì)中的優(yōu)勝隊(duì),會(huì)把支持票投給哪隊(duì)?

查看答案和解析>>

同步練習(xí)冊(cè)答案