2.0722.7063.8415.024">

【題目】某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個(gè)年級(jí)各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時(shí)間的頻數(shù)分布表和頻率分布直方圖,將使用手機(jī)時(shí)間不低于80分鐘的學(xué)生稱為“手機(jī)迷”.

I)將頻率視為概率,估計(jì)哪個(gè)年級(jí)的學(xué)生是“手機(jī)迷”的概率大?請(qǐng)說(shuō)明理由.

II)在高二的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?

非手機(jī)迷

手機(jī)迷

合計(jì)

合計(jì)

附:隨機(jī)變量(其中為樣本總量).

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

span>2.072

2.706

3.841

5.024

【答案】(Ⅰ)高一年級(jí),理由見(jiàn)解析;(Ⅱ)列聯(lián)表見(jiàn)解析,90%

【解析】

(Ⅰ)根據(jù)頻數(shù)分布表和頻率分布直方圖,分別計(jì)算兩個(gè)年級(jí)學(xué)生是“手機(jī)迷”的概率,即可比較,作出判斷.

(Ⅱ)根據(jù)題意,求出手機(jī)迷人數(shù)和非手機(jī)迷人數(shù),完善列聯(lián)表,即可由獨(dú)立性檢驗(yàn)的公式求得,進(jìn)而作出判斷即可.

(Ⅰ)由頻數(shù)分布表可知,高一學(xué)生是“手機(jī)迷”的概率為

由頻率分布直方圖可知,高二學(xué)生是“手機(jī)迷”的概率為=(0.0025+0.010)×20=0.25

因?yàn)?/span>P1P2,所以高一年級(jí)的學(xué)生是“手機(jī)迷”的概率大.

(Ⅱ)由頻率分布直方圖可知,在抽取的100人中,

“手機(jī)迷”有(0.010+0.0025)×20×100=25(人),

非手機(jī)迷有10025=75(人).

從而2×2列聯(lián)表如下:

非手機(jī)迷

手機(jī)迷

合計(jì)

30

15

45

45

10

55

合計(jì)

75

25

100

2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,

結(jié)合參考數(shù)據(jù),可知3.0302.706,所以有90%的把握認(rèn)為“手機(jī)迷”與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=mx2+(1-3m)x-4,m∈R.

(1)當(dāng)m=1時(shí),求f(x)在區(qū)間[-2,2]上的最大值和最小值.

(2)解關(guān)于x的不等式f(x)>-1.

(3)當(dāng)m<0時(shí),若存在x0∈(1,+∞),使得f(x)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國(guó)網(wǎng)民中影響力的綜合指標(biāo),根據(jù)相關(guān)報(bào)道提供的全網(wǎng)傳播2018年某全國(guó)性大型活動(dòng)的省級(jí)衛(wèi)視新聞臺(tái)融合指數(shù)的數(shù)據(jù),對(duì)名列前20名的省級(jí)衛(wèi)視新聞臺(tái)的融合指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示.

組號(hào)

分組

頻數(shù)

1

2

2

8

3

7

4

3

現(xiàn)從融合指數(shù)在內(nèi)的省級(jí)衛(wèi)視新聞臺(tái)中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;

若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一段推理是:直線平行于平面,則平行于平面內(nèi)的所有直線;已知直線平面,直線平面,直線平面,則直線平面.”其結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?/span>

A.使用了三段論,但大前提是錯(cuò)誤的B.使用了三段論,但小前提是錯(cuò)誤的

C.使用了歸納推理D.使用了類比推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人2013-2017這五年的年度體檢的血壓值的折線圖如圖所示.

(1)根據(jù)散點(diǎn)圖,直接判斷甲、乙這五年年度體檢的血壓值誰(shuí)的波動(dòng)更大,并求波動(dòng)更大者的方差;

(2)根據(jù)乙這五年年度體檢血壓值的數(shù)據(jù),求年度體檢血壓值關(guān)于年份的線性回歸方程,并據(jù)此估計(jì)乙在2018年年度體檢的血壓值.

(附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)對(duì)任意實(shí)數(shù)都滿足,且當(dāng)時(shí),

1)判斷函數(shù)的奇偶性,并證明;

2)判斷函數(shù)的單調(diào)性,并證明;

3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年初,我國(guó)突發(fā)新冠肺炎疫情.面對(duì)“突發(fā)災(zāi)難”,舉國(guó)上下心,繼解放軍醫(yī)療隊(duì)于除夕夜飛抵武漢,各省醫(yī)療隊(duì)也陸續(xù)增援,紛紛投身疫情防控與病人救治之中.為分擔(dān)“逆行者”的后顧之憂,某大學(xué)學(xué)生志愿者團(tuán)隊(duì)開(kāi)展“愛(ài)心輔學(xué)”活動(dòng),為抗疫前線工作者子女在線輔導(dǎo)功課.現(xiàn)隨機(jī)安排甲、乙、丙3名志愿者為某學(xué)生輔導(dǎo)數(shù)學(xué)、物理、化學(xué)、生物4門學(xué)科,每名志愿者至少輔導(dǎo)1門學(xué)科,每門學(xué)科由1名志愿者輔導(dǎo),則數(shù)學(xué)學(xué)科恰好由甲輔導(dǎo)的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體ABCDEF中,四邊形ABCD為矩形,二面角A-CD-F60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.

(1)求證:BF∥平面ADE;

(2)在線段CF上求一點(diǎn)G,使銳二面角B-EG-D的余弦值為.

查看答案和解析>>

同步練習(xí)冊(cè)答案