若用P、Q、R分別表示直角坐標(biāo)平面內(nèi)能用“兩點(diǎn)式”“截距式”“點(diǎn)斜式”方程表示的直線的集合,則集合P、Q、R之間的關(guān)系為

[  ]

A.PQR

B.RQP

C.QPR

D.QRP

答案:C
解析:

兩點(diǎn)式是在點(diǎn)斜式的基礎(chǔ)上去掉垂直于y軸的直線,截距式是在兩點(diǎn)式的基礎(chǔ)上去掉過原點(diǎn)的情況.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

20、由部分自然數(shù)構(gòu)成如圖的數(shù)表,用aij(i≥j)表示第i行第j個數(shù)(i,j∈N*),使ai1=aii=i,每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)的之和.設(shè)第n(n∈N*)行中各數(shù)之和為bn
(1)求b6
(2)用bn表示bn+1;
(3)試問:數(shù)列{bn}中是否存在不同的三項bp,bq,br(p,q,r∈N*)恰好成等差數(shù)列?若存在,求出p,q,r的關(guān)系;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ai1=aii=i;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn
(Ⅰ)試寫出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);
(Ⅱ)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn;
(Ⅲ)數(shù)列{bn}中是否存在不同的三項bp,bq,br(p、q、r為正整數(shù))恰好成等差數(shù)列?若存在,求出p、q、r的關(guān)系;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ail=aii=i ;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn

   (1)試寫出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);

   (2)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn;

   (3)數(shù)列{ bn}中是否存在不同的三項bp,bq,br(p,q,r為正整數(shù))恰好成等差數(shù)列?若存在求出P,q,r的關(guān)系;若不存在,請說明理由.

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ai1=aii=i;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn
(Ⅰ)試寫出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);
(Ⅱ)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn;
(Ⅲ)數(shù)列{bn}中是否存在不同的三項bp,bq,br(p、q、r為正整數(shù))恰好成等差數(shù)列?若存在,求出p、q、r的關(guān)系;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州市吳江市松陵高級中學(xué)高三(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ai1=aii=i;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn
(Ⅰ)試寫出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);
(Ⅱ)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn
(Ⅲ)數(shù)列{bn}中是否存在不同的三項bp,bq,br(p、q、r為正整數(shù))恰好成等差數(shù)列?若存在,求出p、q、r的關(guān)系;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案