若點(diǎn)P在橢圓=1上,F(xiàn)為橢圓的一個(gè)焦點(diǎn),則|PF|的取值范圍為

[  ]
A.

[2,8]

B.

[0,5]

C.

[1,9]

D.

[0,4]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(3’+5’+8’)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過(guò)原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

(1)若a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo);

(2)若點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,

求證:點(diǎn)Q落在雙曲線4x2-4y2=1上;

(3)若動(dòng)點(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問(wèn)動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(上海卷理20)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過(guò)原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

⑴已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo).

⑵已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上.

⑶已知?jiǎng)狱c(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問(wèn)動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(上海卷理20)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過(guò)原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

⑴已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo).

⑵已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上.

⑶已知?jiǎng)狱c(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問(wèn)動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(上海卷) 題型:解答題

(3’+5’+8’)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過(guò)原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

(1)若a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo);

(2)若點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,

求證:點(diǎn)Q落在雙曲線4x2-4y2=1上;

(3)若動(dòng)點(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問(wèn)動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案